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Boundary behavior of harmonic functions (1)

Let Ω ⊂ R
n be a Lipschitz domain, i.e., a domain whose boundary is given

locally by a (possibly rotated) Lipschitz graph.
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Boundary behavior of harmonic functions (1)

Let Ω ⊂ R
n be a Lipschitz domain, i.e., a domain whose boundary is given

locally by a (possibly rotated) Lipschitz graph.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω. Suppose that
u = ∇u = 0 in a subset of ∂Ω of positive surface measure σ = Hn−1|∂Ω.
Is it true that u ≡ 0 in Ω?
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Let Ω ⊂ R
n be a Lipschitz domain, i.e., a domain whose boundary is given

locally by a (possibly rotated) Lipschitz graph.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω. Suppose that
u = ∇u = 0 in a subset of ∂Ω of positive surface measure σ = Hn−1|∂Ω.
Is it true that u ≡ 0 in Ω?

Yes, in the planar case n = 2.
Using that log |∇u| is subharmonic, it follows that u ≡ 0.
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Boundary behavior of harmonic functions (1)

Let Ω ⊂ R
n be a Lipschitz domain, i.e., a domain whose boundary is given

locally by a (possibly rotated) Lipschitz graph.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω. Suppose that
u = ∇u = 0 in a subset of ∂Ω of positive surface measure σ = Hn−1|∂Ω.
Is it true that u ≡ 0 in Ω?

Yes, in the planar case n = 2.
Using that log |∇u| is subharmonic, it follows that u ≡ 0.

Yes, if n ≥ 2 and u ≥ 0. Indeed, if u 6≡ 0, then |∂νu| &
dωΩ
dσ in

{u = 0} ∩ ∂Ω, which cannot vanish on a set of positive measure σ.
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Boundary behavior of harmonic functions (1)

Let Ω ⊂ R
n be a Lipschitz domain, i.e., a domain whose boundary is given

locally by a (possibly rotated) Lipschitz graph.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω. Suppose that
u = ∇u = 0 in a subset of ∂Ω of positive surface measure σ = Hn−1|∂Ω.
Is it true that u ≡ 0 in Ω?

Yes, in the planar case n = 2.
Using that log |∇u| is subharmonic, it follows that u ≡ 0.

Yes, if n ≥ 2 and u ≥ 0. Indeed, if u 6≡ 0, then |∂νu| &
dωΩ
dσ in

{u = 0} ∩ ∂Ω, which cannot vanish on a set of positive measure σ.

Yes, if n ≥ 2 and both u = ∇u = 0 in an open subset of ∂Ω.
Proved using that ∆u = (c ∂νu)σ in that open subset of ∂Ω.
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Boundary behavior of harmonic functions (2)

Let Ω ⊂ R
n be a Lipschitz domain.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω.
Suppose that u = ∇u = 0 in a subset of ∂Ω of positive surface.
Is it true that u ≡ 0 in Ω?
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Boundary behavior of harmonic functions (2)

Let Ω ⊂ R
n be a Lipschitz domain.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω.
Suppose that u = ∇u = 0 in a subset of ∂Ω of positive surface.
Is it true that u ≡ 0 in Ω?

No, for n ≥ 3, in general.
Bourgain and Wolff (1990) showed that there exists a function
u : Rn

+ → R harmonic in R
n
+ and C 1 in R

n
+, such that u = ∇u = 0 in a

subset of ∂Rn
+ of positive measure and u 6≡ 0 in Rn

+.
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Boundary behavior of harmonic functions (2)

Let Ω ⊂ R
n be a Lipschitz domain.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω.
Suppose that u = ∇u = 0 in a subset of ∂Ω of positive surface.
Is it true that u ≡ 0 in Ω?

No, for n ≥ 3, in general.
Bourgain and Wolff (1990) showed that there exists a function
u : Rn

+ → R harmonic in R
n
+ and C 1 in R

n
+, such that u = ∇u = 0 in a

subset of ∂Rn
+ of positive measure and u 6≡ 0 in Rn

+.
Result extended by Wang to C 1,α domains.
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Boundary behavior of harmonic functions (2)

Let Ω ⊂ R
n be a Lipschitz domain.

Let u : Ω → R, u ∈ C 1(Ω), harmonic in Ω.
Suppose that u = ∇u = 0 in a subset of ∂Ω of positive surface.
Is it true that u ≡ 0 in Ω?

No, for n ≥ 3, in general.
Bourgain and Wolff (1990) showed that there exists a function
u : Rn

+ → R harmonic in R
n
+ and C 1 in R

n
+, such that u = ∇u = 0 in a

subset of ∂Rn
+ of positive measure and u 6≡ 0 in Rn

+.
Result extended by Wang to C 1,α domains.

Still open the case of C 2 or C∞ functions.
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The question of Fang-Hua Lin (1991)
Let Ω ⊂ R

n be a Lipschitz domain.
Let u : Ω → R be harmonic in Ω and continuous in Ω.
Suppose that u = 0 in a relatively open subset Σ ⊂ ∂Ω and that ∇u = 0
in a subset of Σ of positive surface measure.
(In this situation, ∇u = (∂νu) ν ∈ L2loc(σ|Σ)).

Is it true that u ≡ 0 in Ω?
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Suppose that u = 0 in a relatively open subset Σ ⊂ ∂Ω and that ∇u = 0
in a subset of Σ of positive surface measure.
(In this situation, ∇u = (∂νu) ν ∈ L2loc(σ|Σ)).

Is it true that u ≡ 0 in Ω? Still open, by now.
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The question of Fang-Hua Lin (1991)
Let Ω ⊂ R

n be a Lipschitz domain.
Let u : Ω → R be harmonic in Ω and continuous in Ω.
Suppose that u = 0 in a relatively open subset Σ ⊂ ∂Ω and that ∇u = 0
in a subset of Σ of positive surface measure.
(In this situation, ∇u = (∂νu) ν ∈ L2loc(σ|Σ)).

Is it true that u ≡ 0 in Ω? Still open, by now.

Partial results:

Fang-Hua Lin (1991): True for C 1,1 domains.
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The question of Fang-Hua Lin (1991)
Let Ω ⊂ R

n be a Lipschitz domain.
Let u : Ω → R be harmonic in Ω and continuous in Ω.
Suppose that u = 0 in a relatively open subset Σ ⊂ ∂Ω and that ∇u = 0
in a subset of Σ of positive surface measure.
(In this situation, ∇u = (∂νu) ν ∈ L2loc(σ|Σ)).

Is it true that u ≡ 0 in Ω? Still open, by now.

Partial results:

Fang-Hua Lin (1991): True for C 1,1 domains.

Adolfsson, Escauriaza, Kenig (1995): True for convex domains.
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The question of Fang-Hua Lin (1991)
Let Ω ⊂ R

n be a Lipschitz domain.
Let u : Ω → R be harmonic in Ω and continuous in Ω.
Suppose that u = 0 in a relatively open subset Σ ⊂ ∂Ω and that ∇u = 0
in a subset of Σ of positive surface measure.
(In this situation, ∇u = (∂νu) ν ∈ L2loc(σ|Σ)).

Is it true that u ≡ 0 in Ω? Still open, by now.

Partial results:

Fang-Hua Lin (1991): True for C 1,1 domains.

Adolfsson, Escauriaza, Kenig (1995): True for convex domains.

Adolfsson - Escauriaza (1997) and Kukavica -Nyström (1998):
True for Dini domains (i.e., Lipschitz domains whose outer normal is
Dini-continuous). In particular, true for C 1,α domains.
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The question of Fang-Hua Lin (1991)
Let Ω ⊂ R

n be a Lipschitz domain.
Let u : Ω → R be harmonic in Ω and continuous in Ω.
Suppose that u = 0 in a relatively open subset Σ ⊂ ∂Ω and that ∇u = 0
in a subset of Σ of positive surface measure.
(In this situation, ∇u = (∂νu) ν ∈ L2loc(σ|Σ)).

Is it true that u ≡ 0 in Ω? Still open, by now.

Partial results:

Fang-Hua Lin (1991): True for C 1,1 domains.

Adolfsson, Escauriaza, Kenig (1995): True for convex domains.

Adolfsson - Escauriaza (1997) and Kukavica -Nyström (1998):
True for Dini domains (i.e., Lipschitz domains whose outer normal is
Dini-continuous). In particular, true for C 1,α domains.

Fang-Hua Lin and Adolfsson - Escauriaza:
If u = 0 in Σ and u 6≡ 0 in Ω, then ∇u vanishes in Σ at most in a
subset of dimension n − 2.
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The main result

Theorem (T., 2020)

Let Ω ⊂ R
n be a Lipschitz domain. Let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant
(depending on n).
Let u : Ω → R be harmonic in Ω and continuous in Ω. Suppose that u = 0
in Σ and that ∇u = 0 in a subset of Σ of positive surface measure.
Then u ≡ 0 in Ω.
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The main result

Theorem (T., 2020)

Let Ω ⊂ R
n be a Lipschitz domain. Let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant
(depending on n).
Let u : Ω → R be harmonic in Ω and continuous in Ω. Suppose that u = 0
in Σ and that ∇u = 0 in a subset of Σ of positive surface measure.
Then u ≡ 0 in Ω.

Remarks:

So the result is also true for C 1 domains. Open up to now.
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The main result

Theorem (T., 2020)

Let Ω ⊂ R
n be a Lipschitz domain. Let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant
(depending on n).
Let u : Ω → R be harmonic in Ω and continuous in Ω. Suppose that u = 0
in Σ and that ∇u = 0 in a subset of Σ of positive surface measure.
Then u ≡ 0 in Ω.

Remarks:

So the result is also true for C 1 domains. Open up to now.

No results about the dimension of the set where ∇u may vanish when
u 6≡ 0.
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A corollary about harmonic measure

Corollary

Let Ω ⊂ R
n be a Lipschitz domain, let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant.
Let ωp, ωq be the harmonic measures for Ω with poles in p, q.
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A corollary about harmonic measure

Corollary

Let Ω ⊂ R
n be a Lipschitz domain, let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant.
Let ωp, ωq be the harmonic measures for Ω with poles in p, q.
Suppose that there exists some subset E ⊂ Σ with positive harmonic
measure such that

ωp|E = ωq |E

Then p = q.
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A corollary about harmonic measure

Corollary

Let Ω ⊂ R
n be a Lipschitz domain, let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant.
Let ωp, ωq be the harmonic measures for Ω with poles in p, q.
Suppose that there exists some subset E ⊂ Σ with positive harmonic
measure such that

ωp|E = ωq |E

Then p = q.

Remarks:

Saying that ωp|E = ωq|E is the same as saying that

ωp(F ) = ωq(F ) for all F ⊂ E .
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A corollary about harmonic measure

Corollary

Let Ω ⊂ R
n be a Lipschitz domain, let B be a ball centered in ∂Ω, and

suppose that Σ = B ∩ ∂Ω is a Lipschitz graph with small enough constant.
Let ωp, ωq be the harmonic measures for Ω with poles in p, q.
Suppose that there exists some subset E ⊂ Σ with positive harmonic
measure such that

ωp|E = ωq |E

Then p = q.

Remarks:

The corollary follows by applying the theorem to

u = g(·, p) − g(·, q) in Ω \ (B(p, ε) ∪ B(q, ε)),

taking into account that ω ≈ σ and that dωp

dσ = −∂νg(·, p).
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Ideas for the proof: doubling properties of u

Most results about unique continuation of harmonic functions (and
solutions of other elliptic PDE’s) follow by studying their doubling
properties.
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Ideas for the proof: doubling properties of u

Most results about unique continuation of harmonic functions (and
solutions of other elliptic PDE’s) follow by studying their doubling
properties.
Denote

H(x , r) =

∫

∂B(x ,r)
|u|2 dσ.

Theorem (Adolfsson, Escauriaza, Kenig)

Let Ω be a Lipschitz domain, Σ open in ∂Ω, and u harmonic in Ω,
continuous in Ω, such that u = 0 in Σ and u 6≡ 0 in Ω. Suppose that

H(x , 2r)

H(x , r)
≤ C for all x ∈ Σ, 0 < r ≤ r0.

Then |∂νu| is (locally) an A∞ weight, and thus ∂νu cannot vanish in a
subset of positive measure in Σ.
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Ideas for the proof: doubling properties of u (2)

Recall

H(x , r) =

∫

∂B(x ,r)
|u|2 dσ.

A pointwise result:

Theorem (Adolfsson, Escauriaza)

Let Ω be a Lipschitz domain, Σ open in ∂Ω, and u harmonic in Ω,
continuous in Ω, such that u = 0 in Σ and u 6≡ 0 in Ω.
Suppose that x ∈ Σ is a density point of {x : ∂νu = 0}. Then,

lim
r→0

H(x , 2r)

H(x , r)
= ∞,

and u vanishes to ∞ order in x.
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Carleman inequalities and the frequency function

There are two typical approaches to study the doubling properties of u:

By Carleman inequalities.

Via the Almgren frequency function.
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Carleman inequalities and the frequency function

There are two typical approaches to study the doubling properties of u:

By Carleman inequalities.

Via the Almgren frequency function.

Carleman inequalities seem more flexible from the PDE point of view.

The use of the Almgren frequency function seems more appropriate for
results involving geometric arguments.

Recently used by Cheeger, Naber and Valtorta to obtain effective
estimates for the size of the singular and critical sets for solution of elliptic
PDE’s, and by Logunov in his work on the Nadirashvili conjecture.
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The frequency function

We will use the frequency function:

N(x , r) = r ∂r log −

∫

∂B(x ,r)
|u|2 dσ = r ∂r log

H(x , r)

σ(∂B(x , r))
.
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The frequency function

We will use the frequency function:

N(x , r) = r ∂r log −

∫

∂B(x ,r)
|u|2 dσ = r ∂r log

H(x , r)

σ(∂B(x , r))
.

By integration by parts (assuming B(x , r) ∩ ∂Ω ⊂ Σ):

N(x , r) =
2r

∫

B(x ,r) |∇u|2 dy
∫

∂B(x ,r) |u|
2 dσ

=
2r

∫

B(x ,r) |∇u|2 dy

H(x , r)
.
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The frequency function

We will use the frequency function:

N(x , r) = r ∂r log −

∫

∂B(x ,r)
|u|2 dσ = r ∂r log

H(x , r)

σ(∂B(x , r))
.

By integration by parts (assuming B(x , r) ∩ ∂Ω ⊂ Σ):

N(x , r) =
2r

∫

B(x ,r) |∇u|2 dy
∫

∂B(x ,r) |u|
2 dσ

=
2r

∫

B(x ,r) |∇u|2 dy

H(x , r)
.

If u is a harmonic d -homogeneous polynomial, then N(0, r) = 2d for all r .
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The frequency function (2)

If B(x , r) ⊂ Ω, then ∂rN(x , r) ≥ 0.
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The frequency function (2)

If B(x , r) ⊂ Ω, then ∂rN(x , r) ≥ 0. Thus,

N(x , r) ≤ N(x , r0) < ∞ if 0 < r < r0 and B(x , r0) ⊂ Ω.

Then,

∂r log −

∫

∂B(x ,r)
|u|2 dσ =

N(x , r)

r
≤

N(x , r0)

r
.
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The frequency function (2)
If B(x , r) ⊂ Ω, then ∂rN(x , r) ≥ 0. Thus,

N(x , r) ≤ N(x , r0) < ∞ if 0 < r < r0 and B(x , r0) ⊂ Ω.

Then,

∂r log −

∫

∂B(x ,r)
|u|2 dσ =

N(x , r)

r
≤

N(x , r0)

r
.

Integrating between r/2 and r ,

log
−
∫

∂B(x ,r) |u|
2 dσ

−
∫

∂B(x ,r/2) |u|
2 dσ

≤ N(x , r0) log 2.
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The frequency function (2)

If B(x , r) ⊂ Ω, then ∂rN(x , r) ≥ 0. Thus,

N(x , r) ≤ N(x , r0) < ∞ if 0 < r < r0 and B(x , r0) ⊂ Ω.

Then,

∂r log −

∫

∂B(x ,r)
|u|2 dσ =

N(x , r)

r
≤

N(x , r0)

r
.

Integrating between r/2 and r ,

−
∫

∂B(x ,r) |u|
2 dσ

−
∫

∂B(x ,r/2) |u|
2 dσ

≤ 2N(x ,r0).
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The frequency function (2)

If B(x , r) ⊂ Ω, then ∂rN(x , r) ≥ 0. Thus,

N(x , r) ≤ N(x , r0) < ∞ if 0 < r < r0 and B(x , r0) ⊂ Ω.

Then,

∂r log −

∫

∂B(x ,r)
|u|2 dσ =

N(x , r)

r
≤

N(x , r0)

r
.

Integrating between r/2 and r ,

−
∫

∂B(x ,r) |u|
2 dσ

−
∫

∂B(x ,r/2) |u|
2 dσ

≤ 2N(x ,r0).

So,

lim sup
r→0

H(x , 2r)

H(x , r)
< ∞.
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The frequency function (3)

When B(x , r) ∩ ∂Ω 6= ∅, the situation is more complicated. We have:

∂rN(x , r) = (· · · ) +
2

H(x , r)

∫

B(x ,r)∩∂Ω
(y − x) · ν(y)

∣

∣∂νu(y)
∣

∣

2
dσ(y),

where (· · · ) ≥ 0.
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The frequency function (3)

When B(x , r) ∩ ∂Ω 6= ∅, the situation is more complicated. We have:

∂rN(x , r) = (· · · ) +
2

H(x , r)

∫

B(x ,r)∩∂Ω
(y − x) · ν(y)

∣

∣∂νu(y)
∣

∣

2
dσ(y),

where (· · · ) ≥ 0.
To ensure that ∂rN(x , r) ≥ 0, it is natural to ask that

(y − x) · ν(y) ≥ 0 for all y ∈ B(x , r) ∩ ∂Ω.
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The frequency function (3)

When B(x , r) ∩ ∂Ω 6= ∅, the situation is more complicated. We have:

∂rN(x , r) = (· · · ) +
2

H(x , r)

∫

B(x ,r)∩∂Ω
(y − x) · ν(y)

∣

∣∂νu(y)
∣

∣

2
dσ(y),

where (· · · ) ≥ 0.
To ensure that ∂rN(x , r) ≥ 0, it is natural to ask that

(y − x) · ν(y) ≥ 0 for all y ∈ B(x , r) ∩ ∂Ω.

This is equivalent to say that B(x , r) ∩ Ω is star-shaped with respect to x .
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The condition (y − x) · ν(y) ≥ 0
The condition

(y − x) · ν(y) ≥ 0 for all y ∈ B(x , r) ∩ ∂Ω

holds for convex domains and x ∈ ∂Ω:

b

b

x

y

ν(y)Ω
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The condition (y − x) · ν(y) ≥ 0

The condition

(y − x) · ν(y) ≥ 0 for all y ∈ B(x , r) ∩ ∂Ω

may fail for Lipschitz domains and x ∈ ∂Ω:

b

b

x
y

ν(y)

Ω
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The condition (y − x) · ν(y) ≥ 0 at points x close to

Σ ⊂ ∂Ω

Ω ⊂ R
n Lipschitz domain.

If x ∈ Ω, B(x , r) ∩ ∂Ω ⊂ Σ, the slope of Σ is ≤ θ, and dist(x ,Σ) ≥ Cθ r ,
then

(y − x) · ν(y) ≥ 0 for all y ∈ B(x , r) ∩ ∂Ω

and thus ∂rN(x , r) ≥ 0.

b

b

Ω

Σ

x

y

ν(y)
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Approaching points in ∂Ω from the interior

We would like to show that

lim
r→0

H(x , 2r)

H(x , r)
6= ∞ for a.e. x ∈ Σ. (1)
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Approaching points in ∂Ω from the interior

We would like to show that

lim
r→0

H(x , 2r)

H(x , r)
6= ∞ for a.e. x ∈ Σ. (1)

Given x ∈ Σ, if there exists a sequence {xk}k ⊂ Ω such that

|xk − x | ≈ dist(xk ,Σ) → 0

and N(xk , 100|xk − x |) ≤ C for all k , then, for rk = |x − xk |,

H(x , 2rk )

H(x , rk )
.

H(xk , 4rk)

H(xk , rk/2)
≤ 8N(xk ,100|xk−x |) ≤ C ,

and thus (1) holds.
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Some Whitney cubes

b

Ω

Σ

b

b

xR
R

Q∈Wk(R)
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The Key Lemma

Lemma
Let R ⊂ Ω be a Whitney cube. Let Wk(R) be the family of Whitney cubes
at k-levels down from R, as above. Suppose that N(xR , 100ℓ(R)) ≥ N0.
Let δ ∈ (0, 10−3). If k is big enough, then at least 10% of the cubes
Q ∈ Wk(R) satisfy

N(xQ , δ
−2ℓ(Q)) ≤

1

2
N(xR , δ

−2ℓ(R)).

The remaining 90% cubes from Wk(R) satisfy

N(xQ , δ
−2ℓ(Q)) ≤ (1 + δ)N(xR , δ

−2ℓ(R)).
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Let R ⊂ Ω be a Whitney cube. Let Wk(R) be the family of Whitney cubes
at k-levels down from R, as above. Suppose that N(xR , 100ℓ(R)) ≥ N0.
Let δ ∈ (0, 10−3). If k is big enough, then at least 10% of the cubes
Q ∈ Wk(R) satisfy

N(xQ , δ
−2ℓ(Q)) ≤

1

2
N(xR , δ

−2ℓ(R)).

The remaining 90% cubes from Wk(R) satisfy

N(xQ , δ
−2ℓ(Q)) ≤ (1 + δ)N(xR , δ

−2ℓ(R)).

The proof uses techniques developed by Logunov in connection with
Nadirashvili’s conjecture.

Monotonicity of N(x , ·) for x close Σ and combinatorial arguments.

It relies on a result of quantitative unique Cauchy continuation.
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Application of the law of large numbers
For x ∈ Σ, consider a sequence of Whitney cubes {Qj} centered at {xj}
approaching x with ℓ(Qj) ≈ dist(x ,Qj ), ℓ(Qj) = 2−kj . By the law of large
numbers, for σ-a.e. x ∈ Σ, about 10% of the cubes in the sequence satisfy

N(xj , δ
−2ℓ(Qj)) ≤

1

2
N(xj−1, δ

−2ℓ(Qj−1)),

and the other 90% of cubes satisfy

N(xj , δ
−2ℓ(Qj )) ≤ (1 + δ)N(xj−1, δ

−2ℓ(Qj−1)).
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and the other 90% of cubes satisfy

N(xj , δ
−2ℓ(Qj )) ≤ (1 + δ)N(xj−1, δ

−2ℓ(Qj−1)).

For δ small enough, we deduce that

lim inf
j→∞

N(xj , δ
−2ℓ(Qj)) < ∞.
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approaching x with ℓ(Qj) ≈ dist(x ,Qj ), ℓ(Qj) = 2−kj . By the law of large
numbers, for σ-a.e. x ∈ Σ, about 10% of the cubes in the sequence satisfy

N(xj , δ
−2ℓ(Qj)) ≤

1

2
N(xj−1, δ

−2ℓ(Qj−1)),

and the other 90% of cubes satisfy

N(xj , δ
−2ℓ(Qj )) ≤ (1 + δ)N(xj−1, δ

−2ℓ(Qj−1)).

For δ small enough, we deduce that

lim inf
j→∞

N(xj , δ
−2ℓ(Qj)) < ∞.

Thus

lim inf
r→0

H(x , 2r)

H(x , r)
< ∞ for σ-a.e. x ∈ Σ,

and by Adolfsson-Escauriaza x is not a density point of {x ∈ Σ : ∇u = 0}.
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Open problems

Is the answer to Fang-Hua Lin’s problem positive for general Lipschitz
domains?
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Open problems

Is the answer to Fang-Hua Lin’s problem positive for general Lipschitz
domains?

And for chord-arc domains (i.e., NTA domains with AD-regular
boundary)?

Can one get any information of the blowups of u and Ω at the
boundary?
The case of convex domains studied by McCurdy (2019).
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Thank you!
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