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Turbulence

Observed in a variety of weakly dissipative physical systems (e.g.,
fluids, plasmas). Key features:

Chaotic: Extreme sensitivity to initial
data, positive Lyapunov exponent.

Ergodic: Time averages the same as
running multiple experiments.

Multiscale: Exhibits a multitude of
scales and a cascade between scales.

Universality: Statistics between the
largest and smallest scales appear to
be universal, i.e., independent of
details of experiment. Figure: Credit: Johns Hopkins

turbulence data base
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Turbulence

Example: hydrodynamic turbulence in the Navier-Stokes equations:
describe dynamics of

∂tu + (u ⋅ ∇)u −∇p = ν∆u + F
as ν → 0.

Inherently high/infinite dimensional: number of ‘active’ modes
→∞ as ν → 0

Beyond well-posedness challenges: quantitative dynamical
information on how energies are transferred from large spatial
scales (low modes) to small spatial scales

Major open problems, not at all settled (even among
physicists– intermittency corrections to K41 predictions)

Topic of this talk: more tractable case of passive scalar
turbulence.
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Passive scalar advection

Setting: Incompressible fluid on a domain Ω ⊂ Rd or
Ω = Td ,d = 2,3 with velocity field u(t, x), x ∈ Ω, t ≥ 0 (e.g.,
solution to Navier-Stokes with fixed viscosity ν > 0)

Passive scalar advection with source1 G and diffusivity κ > 0:

∂tg + u ⋅ ∇g
²

Advection by u(t, x)

= κ∆g
±

Diffusivity

+ G®
Source

, g(0, x) = g0(x)

1
∫ G(t, x)dx ≡ 0
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Batchelor-regime passive scalar turbulence

u(t, ⋅) ∶ Ω→ Rd , ∇ ⋅ u ≡ 0

∂tg + u ⋅ ∇g = κ∆g +G , g(0, x) = g0(x)
Physicists often study the power spectral density of the ensemble average
(defined precisely later!)

Γ(k) ∶= E∣k ∣d−1∣ĝ(k)∣2 and E(k) ∶= E∣k ∣d−1∣û(k)∣2

No mathematically rigorous proof of any power spectrum in fluid mechanics.
In 1959, Batchelor predicted a spectrum of Γ(k) ≈ ∣k ∣−1 in the regime ν ≫ κ.
Sc = ν/κ is called the Schmidt number.
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Observation, experiments, and numerics

Figure: Gibson, C., and W. H. Schwarz. ”The universal equilibrium spectra of
turbulent velocity and scalar fields.” Journal of Fluid Mechanics 16.3 (1963): 365-384.
Spectra for salinity concentrations in grid-driven turbulence experiment.
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Observation, experiments, and numerics

Comparison of modern numerical experiments.

Figure: Antonia, R. A., and P. Orlandi. ”Effect of Schmidt number on
small-scale passive scalar turbulence.” Appl. Mech. Rev. 56.6 (2003):
615-632. Comparison of spectra generated by various numerical
calculations by a variety of authors.
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Small scales in passive scalar advection

Incompressible fluid on a domain Ω ⊂ Rd or Ω = Td ,d = 2,3 with
velocity field u(t, x), x ∈ Ω, t ≥ 0.

Passive scalar advection with source2 G and diffusivity κ > 0:

∂tg + u ⋅ ∇g = κ∆g +G , g(0, x) = g0(x)

Key point, known to physicists: Creation of small scales in g
due to chaotic properties of Lagrangian flow φt on Ω,

d

dt
φt = u(t, φt(x))

2
∫ G(t, x)dx ≡ 0
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Results in this paper: proof of Batchelor power law

u(t, ⋅) ∶ Ω→ Rd , ∇ ⋅ u ≡ 0, d
dt
φt(x) = u(t, φt(x))

∂tg + u ⋅ ∇g = κ∆g +G , g(0, x) = g0(x)

Our series of four papers: when u(t, x) evolves by stochastic
Navier-Stokes on Ω = Td ,d = 2 or d = 3: 3

Lagrangian flow φt is chaotic (sensitivity w.r.t. initial
conditions, exponentially fast mixing)

Rigorous proof of Batchelor’s 1959 law for power spectrum
along inertial range for statistically stationary passive scalars
as κ→ 0

3For d = 3 our results apply when u evolves by a hyperviscous regularization
of stochastic 3D NSE.
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Mechanism for generating small scales

u(t, ⋅) ∶ Ω→ Rd , ∇ ⋅ u ≡ 0, d
dt
φt(x) = u(t, φt(x))

∂tg + u ⋅ ∇g = κ∆g +G , g(0, x) = g0(x)

At κ = 0,G ≡ 0, have g(t, x) = g0((φt)−1(x)). Using ∇ ⋅ u ≡ 0:

∥∇g(t, ⋅)∥2L2 = ∫ ∣(Dxφ
t)−⊺(∇xg0)∣2 dx .

Growth of ∣(Dxφ
t)−⊺∣ = ∣Dxφ

t ∣ ⇒ ∥g(t, ⋅)∥H1 →∞

Definition (Lyapunov exponent)

λ(u, x) = lim sup
t→∞

1

t
log ∣Dxφ

t ∣

Positive Lyapunov exponent implies chaotic dynamics exhibiting sensitivity with

respect to initial conditions. Necessary but not sufficient for fast mixing.
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(Dynamical) Hyperbolicity: local mechanism for chaos

CAT map F ∶ T2 → T2, F(x) = ( 2 1
1 1

) x (modZ2).
EuEs

Sensitivity w.r.t. initial conditions:
d(F n(p1),F n(p2)) ≳ eαnd(p1,p2) when p1 − p2 ∉ E s

Fast mixing: for scalars φ,ψ ∈ H1,

∣ ∫ φ ⋅ ψ ○ F n − ∫ φ∫ ψ∣ ≤ C∥φ∥H1∥ψ∥H1e−βn ,

α, β,C > 0 constants.

Well-known: these hold for all uniformly hyperbolic systems
Alex Blumenthal Georgia Tech
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Heuristic for −1 power law

Illustration of role played by hyperbolicity:

Consider CAT map F ∶ T2 → T2, F (x) = Ax (modZ2),

A = ( 2 1
1 1

).

Discrete-time toy model of passive scalar “advection”: (ignores
diffusivity for now)

gn+1(x) = gn ○ F−1(x) + ωn+1 sin(2πx1) ,
{ωj} IID.

With g0 ≡ 0, have

gn(x) =
n−1

∑
j=0

ωn−j sin 2π ⟨x , (A⊺)−j (1
0
)⟩ .

Let λ > 1 > λ−1 be eigenvalues of A. Then, E∥Πλm≤⋅≤λm+1gn∥2 ≈ 1 for
all m, consistent with −1 power law.
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Beyond uniform hyperbolicity
Typically, hyperbolicity not uniform. Most systems of physical
interest have “mixed” behavior: elliptic and hyperbolic

Picture credit: Wikipedia user Linas

At left: Chirikov standard
map F ∶ T2 → T2

Hyperbolicity at p ∈ T2 in
green region, where
Lyapunov exponent λ(p) =
lim supn→∞

1
n log ∣DpF

n∣ is
positive.

Standard map conjecture:
{λ(p) > 0} has positive
area. Wide open.
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Deterministic Lagrangian flow

u(t, ⋅) ∶ Td → Rd , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Chirikov standard map a
toy model for stretch-
ing and folding generating
small scales.

Hopelessly out of reach
to prove Lagrangian chaos
for deterministic fluids
models.

Picture credit: Paul Götzfried, Mohammad S. Emran, Emmanuel Villermaux, and Jörg

Schumacher, Phys. Rev. Fluids 4, 2019

Alex Blumenthal Georgia Tech

Batchelor’s law for passive scalar turbulence



Introduction Mechanism for Batchelor’s law Results Proof concepts Conclusion

Stochastic Navier-Stokes model

u(t, ⋅) ∶ Td → Rd , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Problem is tractable in the presence of noise!

Consider, e.g., 2D Navier-Stokes with stochastic forcing:

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0

where QWt is white-in-time, mean zero, divergence free,
spatially Sobolev

2D Navier-Stokes globally (mildly) well-posed for a.e. path
realization
Markov process ut = u(t, ⋅); unique stationary measure when
QWt “sufficiently nondegenerate” (e.g., Flandoli-Maslowski,
Hairer-Mattingly, Kuksin-Shirikyan)
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1. Lagrangian Chaos

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Theorem (BBPS 2018, submitted)

If QWt satisfies certain nondegeneracy condition, then ∃
deterministic constant λ > 0 such that

lim
t→∞

1

t
log ∣Dxφ

t ∣ = λ > 0 w.p.1

for all initial x ∈ T2 and Sobolev regular vector fields u0.
Same for 3D hyperviscous NSE, 2D & 3D Stokes and Galerkin-NSE.

Proof a combination of random dynamical systems theory (Furstenberg rigidity

principle) with SPDE analysis
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1. Lagrangian Chaos

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Theorem (BBPS 2018, submitted)

If QWt satisfies certain nondegeneracy condition, then ∃
deterministic constant λ > 0 such that

lim
t→∞

1

t
log ∣Dxφ

t ∣ = λ > 0 w.p.1

for all initial x ∈ T2 and Sobolev regular vector fields u0.
Same for 3D hyperviscous NSE, 2D & 3D Stokes and Galerkin-NSE.

Nondegeneracy needed is very mild: result valid for ut given by

ut(x , y) = (
Z1(t) sin y + Z2(t) cos y
Z3(t) sin x + Z4(t) cos x

) ,

dZi = −Zidt + dW
(i)
t independent Ornstein-Uhlenbeck processes.
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1. Lagrangian Chaos

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Theorem (BBPS 2018, submitted)

If QWt satisfies certain nondegeneracy condition, then ∃
deterministic constant λ > 0 such that

lim
t→∞

1

t
log ∣Dxφ

t ∣ = λ > 0 w.p.1

for all initial x ∈ T2 and Sobolev regular vector fields u0.
Same for 3D hyperviscous NSE, 2D & 3D Stokes and Galerkin-NSE.

Corollary: for solutions to ∂tg + u ⋅ ∇g = 0, have ∥g(t, ⋅)∥H1 ≳ eλt .
Generation of small scales in passive scalar!
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2. Almost-sure exponential mixing

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Theorem (BBPS 2019, submitted)

Under the same conditions as previous theorem, for all p ≥ 1, there exists
a deterministic γ = γ(p) > 0 and a random constant C = C(ω,u0,p)
such that P×µ a.e. (ω,u0) and arbitrary mean-zero f ∈ H1(Td), we have

∣∫ f (x) ⋅ g ○ φt(x)dx ∣ ≤ Ce−γt∥f ∥H1∥g∥H1

with E ∫ C pdµ(u0) < ∞.

Corollary: exponential H−1 decay for solutions to ∂tg + u ⋅ ∇g = 0.

A priori much stronger than positive Lyapunov exponent. Proof uses
previous theorem as a lemma.
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3. L2 enhanced dissipation

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Cascade of L2 mass to higher modes- should strengthen effect of
diffusivity κ∆ for solutions to ∂tg + u ⋅ ∇g = κ∆g .

Theorem (BBPS19-II, submitted)

For all L2 initial g(0, x) = g0(x) with ∫ g0 = 0, have

∥g(t, ⋅)∥L2 ≲ e−c ∣ logκ∣−1t∥g0∥L2 w .p.1

∣ logκ∣ timescale for dissipation is sharp for C2-regular velocity fields.
NOT a corollary of previous work: requires correlation decay for stochastic
representations

d

dt
φtκ = u(t, φtκ(x)) +

√
κ ˙̂Wt

C.f. stochastic stability of Ruelle resonances: Blank-Keller-Liverani ’02 (Anosov
maps), Dyatlov-Zworski ’16 (contact Anosov flows)
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4. Batchelor’s law for passive scalar turbulence

Batchelor regime: fluid evolution u(t, ⋅) fixed, κ→ 0 in passive
scalar advection

∂tg
κ + u ⋅ ∇gκ = κ∆gκ + η ˙̃Wt

Theorem (BBPS19-III, submitted)

Let (u,gκ) be statistically stationary. Then,

E∥Π≤Ng
κ∥2L2 ≈ logN for 1 ≪ N ≲ κ−1/2

where Π≤Ng is projection onto Fourier modes sin(k ⋅ x), cos(k ⋅ x),
∣k ∣∞ ≤ N

Consistent with power law Γ(k) ≈ ∣k ∣−1, Γ(k) ∶= ∣k ∣d−1E∣ĝ(k)∣2
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Ideas from the proof

Diverse array of tools needed:

Dynamics:

Multiplicative ergodic theory
Random dynamical systems

Stochastics:

Malliavin calculus / nonadapted stochastic calculus for
infinite-dimensional systems
Lyapunov/drift conditions: correlation decay for Markov chains
on “large” systems
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Toy model: IID compositions of matrices

Consider compositions An⋯A2A1 of IID determinant 1
matrices Ai , i ≥ 1

Furstenberg-Kesten ’60: Lyapunov exponent
η = limn→∞

1
n log ∣An∣ exists and constant wp1. Note η ≥ 0.

When is η > 0? Some bad examples of when η = 0:

Random rotations: A1 = (
cos θ sin θ
− sin θ cos θ

) with e.g. θ ∼ N(0,1);

Random shear: A1 = (
1 s
0 1

) with e.g. s ∼ N(0,1);

Stretching and compression get twisted back in on each other:

A1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝

2 0

0 1
2

⎞
⎠

with probability p ∈ (0,1)

⎛
⎝

0 1

−1 0

⎞
⎠

with probability 1 − p ∈ (0,1).
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matrices Ai , i ≥ 1

Furstenberg-Kesten ’60: Lyapunov exponent
η = limn→∞

1
n log ∣An∣ exists and constant wp1. Note η ≥ 0.

When is η > 0? Some bad examples of when η = 0:

Random rotations: A1 = (
cos θ sin θ
− sin θ cos θ

) with e.g. θ ∼ N(0,1);

Random shear: A1 = (
1 s
0 1

) with e.g. s ∼ N(0,1);

Stretching and compression get twisted back in on each other:

A1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝

2 0

0 1
2

⎞
⎠

with probability p ∈ (0,1)

⎛
⎝

0 1

−1 0

⎞
⎠

with probability 1 − p ∈ (0,1).
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Furstenberg ’68: these are essentially the only cases. Staggeringly
strong rigidity result using the algebraic structure of SL2(R).

Theorem (Furstenberg ’68)

If η = 0 then one of two cases:

(a) ∃ inner product ⟨⋅, ⋅⟩ with respect to which A1 is almost-surely
an isometry.

(b) ∃ lines {Li}pi=1,p ∈ {1,2} such that for all 1 ≤ i ≤ p, have
A1Li = Lj for some j.

General principle of Furstenberg criteria: if λ = 0 then matrices
Ai has an “almost-surely invariant structure”.
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Back to Lagrangian flow: ∃ Lyapunov exponent λ

u(t, ⋅) ∶ Td → Rd , φ̇t(x) = u(t, φt(x)) , ut = u(t, x) , xt = φt(x0) .

Lemma (Application of Oseledets’ Multiplicative Ergodic Theorem)

Assume (ut , xt) has a unique stationary measure. Then, ∃λ ≥ 0
deterministic constant such that

lim
t→∞

1

t
log ∣Dxφ

t ∣ = λ w .p.1

for all Sobolev regular u0 = u(0, ⋅) and x0 ∈ Td .

Large lit. on ergodicity / uniqueness of stat. measures for (ut)
process. In our setting stat. measure µ for (ut) unique by
Flandoli-Maslowski if noise nondegenerate, Sobolev-regular.

Process (ut , xt) requires some more work- always hypoelliptic, even
when (ut) noise is completely nondegenerate.
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Proof of λ > 0 by contradiction

u(t, ⋅) ∶ Td → Rd , φ̇t(x) = u(t, φt(x)) , ut = u(t, x) , xt = φt(x0) .

Proposition (BBPS 18)

Fix d = 2. If λ = 0, 2 cases:

(a) ∃ deterministic, continuously-varying family of inner products
⟨⋅, ⋅⟩u,x such that Dx0φ

t an isometry ⟨⋅, ⋅⟩u0,x0 → ⟨⋅, ⋅⟩ut ,xt .
(b) ∃ deterministic, continuously-varying families of lines

Li(u, x), i ≤ p,p = 1,2 such that

Dx0φ
t( ∪pi=1 L

i(u0, x0)) = ∪pi=1L
i(ut , xt)

In both cases, λ = 0 implies degeneracy in law of Dxφ
t .

Inspiration from Baxendale ’89 and other work à là Furstenberg
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Dx0φ
t
u0,ω(L(u0,x0)) = L(ut ,xt)

1

2

3

(u0, x0) (ut, xt)
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Strong Feller

u(t, ⋅) ∶ Td → Rd , φ̇t(x) = u(t, φt(x)) , ut = u(t, x) , xt = φt(x0) .

Definition

Let (zt) be a Markov process on a Polish space Z . We say it has
the strong Feller property if for all bounded measurable φ ∶ Z → R,
have

z ↦ E(φ(zt)∣z0 = z)

is continuous for all t > 0.

Method requires strong Feller for zt = (ut , xt) process:

For finite-dimensional processes: Hörmander’s condition.

In infinite-dimensions: Malliavin calculus with nonadapted
controls

Necessary to force all sufficiently high Fourier modes in NSE
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Almost-sure correlation decay: two-point motion

Consider the two-point motion (ut , xt , yt) with (x ≠ y):

∂txt = ut(xt) , ∂tyt = ut(yt).
Markov process on H × {x ≠ y}
Basic principle: Averaged mixing for (ut , xt , yt) implies

almost-sure mixing for (xt):
Basic idea why: apply Borel-Cantelli after the following L2 trick
(Dolgopyat-Kaloshin-Koralov ‘04, Ayyer-Liverani-Stenlund ’07)

P × µ(∣∫ f ○ φngdx ∣ > e−qn) ≤ e2qn ∫ ∣Eu,x,y f (xn)f (yn)g(x)g(y)∣dxdydµ(u)

= e2qn ∫ ∣g(x)g(y)∣ ⋅ ∣P
(2)
n f̂ (u, x , y)∣dxdydµ(u)

where P
(2)
t ψ(u, x , y) = E(u,x,y)ψ(ut , xt , yt), f̂ (u, x , y) ∶= f (x)f (y).

More quantitative control on constant out front requires regularity of f ,g and a

more complicated argument.
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Averaged correlation decay for (ut , xt , yt)

∂txt = ut(xt) , ∂tyt = ut(yt). P
(2)
t ψ(u, x , y) = E(u,x,y)ψ(ut , xt , yt)

Process degenerates near (i) ∥u∥Hσ ≫ 1 or (ii) d(x , y) ≪ 1.

At best, hope to show ∃γ > 0,V = V (u, x , y) such that

∣P(2)t ϕ(u, x , y) − ∫
Td×Td ∫L2

ϕ(u, x , y)µ(du)dxdy ∣ ≲ V (u0, x0, y0)e−γt∥ϕ∥L∞ .

Necessarily, V (u, x , y) → ∞ as ∥u∥Hσ →∞ or d(x , y) → 0.

Harris’s Theorem: Irreducibility + Drift condition P
(2)
t V ≤ Ce−αtV + C ′

For d = 2, can control u via V̂η,β(u) = (1 + ∥u∥2Hσ )βeη∥∇×u∥
2
L2
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∂txt = ut(xt) , ∂tyt = ut(yt). P
(2)
t ψ(u, x , y) = E(u,x,y)ψ(ut , xt , yt)

P
(2)
t V ≤ Ce−αtV + C ′

To control d(x , y):
When d(x , y) ≪ 1, have ∣φt(y) − φt(x)∣ ≈ ∣Dxφtv ∣ , v ∶= y − x

Morally, positive Lyap exponent should imply exponentially fast repulsion from
{x = y}
Mathematically: track tangent directions vt ∶= Dxφt(v0)/∣Dxφt(v0)∣. Seek

dominant eigenfunction of Feynman-Kac semigroup P̂t

P̂q
t ψ(u, x , v) = E(u,x,v)∣Dxφ

t(v)∣−qψ(ut , xt , vt)

= E(u,x,v)e
−q ∫ t

0 ⟨vs ,Dxs us(vs)⟩dsψ(ut , xt , vt)

on ψ ∶ H × Td × Sd−1 → R; here 0 < q ≪ 1.

Proposition

For all q ≪ 1, spectral gap for P̂q
t ; dominant eigenvalue ≈ e−qtλ1 , and dominant

eigenfunction ψq > 0.

V (u, x , y) = V̂η,β(u) + d(x , y)−qψq(u, x ,
y − x

∣y − x ∣
)
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Concluding remarks

We have initiated a study of Lagrangian chaos and Batchelor-regime
passive scalar turbulence!

Verification of chaotic regimes and consequences (H1 blowup, H−1 decay, L2

enhanced dissipation, Batchelor’s law) for Lagrangian flow for deterministic NSE
are largely intractable.

In presence of noise, possible to do much more!

Looking forward:

Dependence of Lyap. exponent λ on parameters of velocity field process?
Reynolds number?

Ambitious goal: chaotic properties for Eulerian dynamics?

Recent progress already for L96 (arXiv:2007.15827), Galerkin NSE is work

in progress
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Thank you!
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