Generic regularity of free boundaries for the obstacle problem

Xavier Ros-Oton

Universität Zürich

ShanghaiTech University, April 2020

• Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries

- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas

- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas
 - Most classical example:

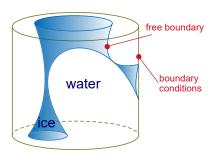
Stefan problem (1831)

It describes the melting of ice.

- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas
 - Most classical example:

Stefan problem (1831)

It describes the melting of ice.



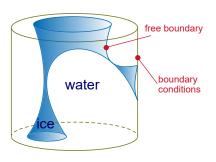
- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas
 - Most classical example:

Stefan problem (1831)

It describes the melting of ice.

• If $\theta(t,x)$ denotes the temperature,

$$\theta_t = \Delta \theta$$
 in $\{\theta > 0\}$



- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas
 - Most classical example:

Stefan problem (1831)

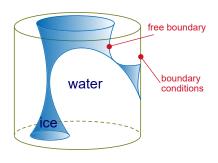
It describes the melting of ice.

• If $\theta(t,x)$ denotes the temperature,

$$\theta_t = \Delta \theta$$
 in $\{\theta > 0\}$

• Free boundary determined by:

$$|\nabla_x \theta|^2 = \theta_t \quad \text{on} \quad \partial \{\theta > 0\}$$



- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas
 - Most classical example:

Stefan problem (1831)

It describes the melting of ice.

• If $\theta(t,x)$ denotes the temperature,

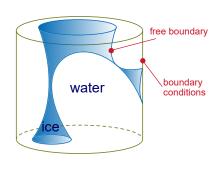
$$\theta_t = \Delta \theta$$
 in $\{\theta > 0\}$

• Free boundary determined by:

$$|\nabla_x \theta|^2 = \theta_t \quad \text{on} \quad \partial \{\theta > 0\}$$

• $u := \int_0^t \theta \ge 0$ solves:

$$u_t - \Delta u = -\chi_{\{u > 0\}}$$



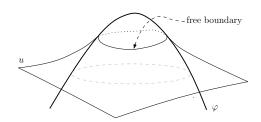
The obstacle problem

The obstacle problem

Given $\varphi \in \mathcal{C}^{\infty}$, minimize

$$\mathcal{E}(v) = \int_{\Omega} |\nabla u|^2 dx$$

with the constraint $v \ge \varphi$

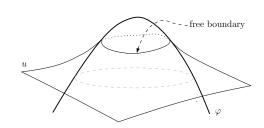


The obstacle problem

Given $\varphi \in \mathcal{C}^{\infty}$, minimize

$$\mathcal{E}(v) = \int_{\Omega} |\nabla u|^2 dx$$

with the constraint $v \geq \varphi$



The obstacle problem is

$$\begin{cases} v \geq \varphi & \text{in } \Omega \\ \Delta v = 0 & \text{in } \{x \in \Omega : v > \varphi\} \\ \nabla v = \nabla \varphi & \text{on } \partial \{v > \varphi\}, \end{cases}$$

(usually with boundary conditions v = g on $\partial\Omega$)

$$\left\{ \begin{array}{ccccc} u & \geq & 0 & \text{in} & \Omega, \\ \Delta u & = & 1 & \text{in} & \left\{ x \in \Omega : u > 0 \right\} \\ \nabla u & = & 0 & \text{on} & \partial \left\{ u > 0 \right\}. \end{array} \right. \longleftrightarrow \left[\begin{array}{c} u \geq 0 & \text{in} \ \Omega \\ \Delta u = \chi_{\left\{ u > 0 \right\}} & \text{in} \ \Omega \end{array} \right]$$

Unknowns: solution u &

$$\left\{ \begin{array}{llll} u & \geq & 0 & \text{in} & \Omega, \\ \Delta u & = & 1 & \text{in} & \left\{ x \in \Omega : u > 0 \right\} \\ \nabla u & = & 0 & \text{on} & \partial \left\{ u > 0 \right\}. \end{array} \right. \longleftrightarrow \left[\begin{array}{lll} u \geq 0 & \text{in} \ \Omega \\ \Delta u = \chi_{\left\{ u > 0 \right\}} & \text{in} \ \Omega \end{array} \right]$$

$$\label{eq:definition} \begin{split} u &\geq 0 \quad \text{in } \Omega \\ \Delta u &= \chi_{\{u>0\}} \quad \text{in } \Omega \end{split}$$

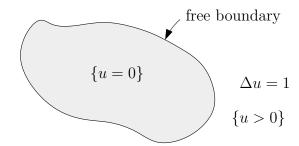
Unknowns: solution u & the contact set $\{u = 0\}$

$$u \geq 0 \quad \text{in } \Omega$$

$$\Delta u = \chi_{\{u>0\}} \quad \text{in } \Omega$$

Unknowns: solution u & the contact set $\{u=0\}$

The free boundary (FB) is the boundary $\partial \{u > 0\}$



 Various free boundary problems appear in Physics, Industry, Finance, Biology, and other areas

- Various free boundary problems appear in Physics, Industry, Finance, Biology, and other areas
- in Sciences: Fluid mechanics; elasticity; pricing of options; interacting particle systems, etc.

- Various free boundary problems appear in Physics, Industry, Finance, Biology, and other areas
- in Sciences: Fluid mechanics; elasticity; pricing of options; interacting particle systems, etc.
- in Mathematics: Optimal stopping (Probability), Quadrature domains (Complex Analysis, Potential Theory), Random matrices, etc.

- Various free boundary problems appear in Physics, Industry, Finance, Biology, and other areas
- in Sciences: Fluid mechanics; elasticity; pricing of options; interacting particle systems, etc.
- in Mathematics: Optimal stopping (Probability), Quadrature domains (Complex Analysis, Potential Theory), Random matrices, etc.
- All these examples give rise to the obstacle problem or the Stefan problem.

- Various free boundary problems appear in Physics, Industry, Finance, Biology, and other areas
- in Sciences: Fluid mechanics; elasticity; pricing of options; interacting particle systems, etc.
- in Mathematics: Optimal stopping (Probability), Quadrature domains (Complex Analysis, Potential Theory), Random matrices, etc.
- <u>All</u> these examples give rise to the obstacle problem or the Stefan problem.
- ullet Moreover, Stefan problem \longleftrightarrow parabolic obstacle problem !

- Various free boundary problems appear in Physics, Industry, Finance, Biology, and other areas
- in Sciences: Fluid mechanics; elasticity; pricing of options; interacting particle systems, etc.
- in Mathematics: Optimal stopping (Probability), Quadrature domains (Complex Analysis, Potential Theory), Random matrices, etc.
- \bullet $\underline{\mbox{All}}$ these examples give rise to the obstacle problem or the Stefan problem.
- $\bullet \ \, \mathsf{Moreover}, \qquad \mathsf{Stefan} \ \mathsf{problem} \ \longleftrightarrow \ \mathsf{parabolic} \ \mathsf{obstacle} \ \mathsf{problem} \, !$
- Thus, we want to understand better such problem.

Fundamental question:

Is the Free Boundary smooth?

Fundamental question:

Is the Free Boundary smooth?

• First results (1960's & 1970's): Solutions u are $C^{1,1}$

Fundamental question:

Is the Free Boundary smooth?

• First results (1960's & 1970's): Solutions u are $C^{1,1}$, and this is optimal.

Fundamental question:

Is the Free Boundary smooth?

- First results (1960's & 1970's): Solutions u are $C^{1,1}$, and this is optimal.
- Kinderlehrer-Nirenberg (1977): If the FB is C^1 , then it is C^{∞}

Fundamental question:

Is the Free Boundary smooth?

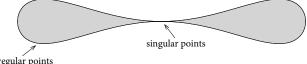
- First results (1960's & 1970's): Solutions u are $C^{1,1}$, and this is optimal.
- Kinderlehrer-Nirenberg (1977): If the FB is C^1 , then it is C^{∞}
- Caffarelli (Acta Math. 1977): The FB is C^1 (and thus C^{∞}),

Fundamental question:

Is the Free Boundary smooth?

- First results (1960's & 1970's): Solutions u are $C^{1,1}$, and this is optimal.
- Kinderlehrer-Nirenberg (1977): If the FB is C^1 , then it is C^{∞}
- Caffarelli (Acta Math. 1977): The FB is C^1 (and thus C^{∞}),

possibly outside a certain set of singular points

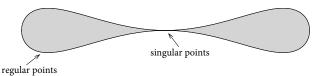


regular points

Fundamental question:

Is the Free Boundary smooth?

- First results (1960's & 1970's): Solutions u are $C^{1,1}$, and this is optimal.
- Kinderlehrer-Nirenberg (1977): If the FB is C^1 , then it is C^{∞}
- Caffarelli (Acta Math. 1977): The FB is C^1 (and thus C^{∞}), possibly outside a certain set of singular points



• Furthermore, same results hold for the Stefan problem

To study the regularity of the FB, one considers $\ensuremath{\mathrm{blow}\text{-}\mathrm{ups}}$

$$u_r(x) := \frac{u(x_0 + rx)}{r^2} \ \longrightarrow \ u_0(x) \qquad \text{in} \ \ C^1_{\text{loc}}(\mathbb{R}^n)$$

To study the regularity of the FB, one considers |blow-ups|

$$u_r(x) := \frac{u(x_0 + rx)}{r^2} \ \longrightarrow \ u_0(x) \qquad \text{in} \ \ C^1_{\text{loc}}(\mathbb{R}^n)$$

The key difficulty is to classify blow-ups:

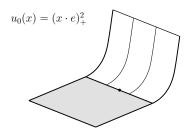
To study the regularity of the FB, one considers $\left| \, \mathrm{blow\text{-}ups} \right|$

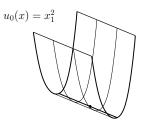
$$u_r(x) := \frac{u(x_0 + rx)}{r^2} \longrightarrow u_0(x)$$
 in $C^1_{loc}(\mathbb{R}^n)$

The key difficulty is to classify blow-ups:

regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)

singular point
$$\implies u_0(x) = \sum \lambda_i x_i^2$$
 (paraboloid)





regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)
singular point $\implies u_0(x) = \sum \lambda_i x_i^2$ (paraboloid)

regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)
singular point $\implies u_0(x) = \sum \lambda_i x_i^2$ (paraboloid)

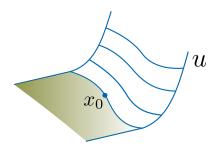
Finally, once the blow-ups are classified, we transfer the information from u_0 to u

regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)
singular point $\implies u_0(x) = \sum \lambda_i x_i^2$ (paraboloid)

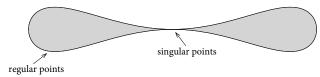
Finally, once the blow-ups are classified, we transfer the information from u_0 to u, and prove that the FB is C^1 near regular points.

regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)
singular point $\implies u_0(x) = \sum \lambda_i x_i^2$ (paraboloid)

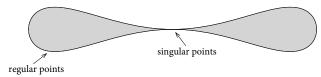
Finally, once the blow-ups are classified, we transfer the information from u_0 to u, and prove that the FB is C^1 near regular points.



 $\underline{\text{Question}} :$ What can one say about singular points?

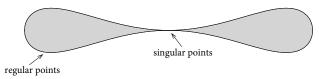


Question: What can one say about singular points?



ullet Caffarelli (1998): Singular points are contained in a (n-1)-dimensional C^1 manifold.

Question: What can one say about singular points?



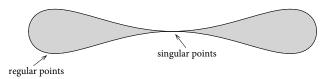
ullet Caffarelli (1998): Singular points are contained in a (n-1)-dimensional C^1 manifold.

Moreover, at each singular point x_0 we have

$$u(x) = p_2(x) + [o(|x - x_0|^2)],$$

where p_2 is the blow-up.

Question: What can one say about singular points?



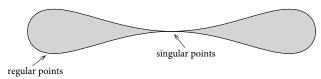
• Caffarelli (1998): Singular points are contained in a (n-1)-dimensional C^1 manifold. Moreover, at each singular point x_0 we have

$$u(x) = p_2(x) + [o(|x - x_0|^2)],$$

where p_2 is the blow-up.

• Weiss (1999): In \mathbb{R}^2 , singular points are contained in a $C^{1,\alpha}$ manifold: $O(|x-x_0|^{2+\alpha})$

Question: What can one say about singular points?



• Caffarelli (1998): Singular points are contained in a (n-1)-dimensional C^1 manifold. Moreover, at each singular point x_0 we have

$$u(x) = p_2(x) + [o(|x - x_0|^2)],$$

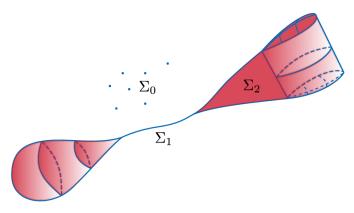
where p_2 is the blow-up.

- Weiss (1999): In \mathbb{R}^2 , singular points are contained in a $C^{1,\alpha}$ manifold: $\begin{bmatrix} c_0(|x-x_0|^{2+\alpha}) \\ c_1(|x-x_0|^{2+\alpha}) \end{bmatrix}$
- Figalli-Serra (2017): Outside a small set of lower dimension, singular points are contained in a $C^{1,1}$ manifold: $\left[\stackrel{\square}{o}(|x-x_0|^3) \right]$

Singular points: how bad can they be?

Singular points: how bad can they be?

A possible example of a free boundary in \mathbb{R}^{3} with singularities:



• Singularities can be quite bad in general... but they are expected to be "rare".

- Singularities can be quite bad in general... but they are expected to be "rare".
- Important open problem in the field: prove generic regularity

- Singularities can be quite bad in general... but they are expected to be "rare".
- Important open problem in the field: prove generic regularity
- This is an open problem in many nonlinear PDE's

- Singularities can be quite bad in general... but they are expected to be "rare".
- Important open problem in the field: prove generic regularity
- This is an open problem in many nonlinear PDE's

Conjecture (Schaeffer 1974)

For generic solutions, the free boundary in the obstacle problem is C^{∞} (with no singular points).

- Singularities can be quite bad in general... but they are expected to be "rare".
- Important open problem in the field: prove generic regularity
- This is an open problem in many nonlinear PDE's

Conjecture (Schaeffer 1974)

For generic solutions, the free boundary in the obstacle problem is C^{∞} (with no singular points).

• Theorem (Monneau 2002): True in \mathbb{R}^2 !

- Singularities can be quite bad in general... but they are expected to be "rare".
- Important open problem in the field: prove generic regularity
- This is an open problem in many nonlinear PDE's

Conjecture (Schaeffer 1974)

For generic solutions, the free boundary in the obstacle problem is C^{∞} (with no singular points).

- Theorem (Monneau 2002): True in \mathbb{R}^2 !
- ullet For minimal surfaces: Similar result valid in \mathbb{R}^8 (Smale 1993)

- Singularities can be quite bad in general... but they are expected to be "rare".
- Important open problem in the field: prove generic regularity
- This is an open problem in many nonlinear PDE's

Conjecture (Schaeffer 1974)

For generic solutions, the free boundary in the obstacle problem is C^{∞} (with no singular points).

- Theorem (Monneau 2002): True in \mathbb{R}^2 !
- ullet For minimal surfaces: Similar result valid in \mathbb{R}^8 (Smale 1993)
- Nothing known in higher dimensions!

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^3 , with boundary data $g + \lambda$.

Then, for almost every constant λ , the free boundary is C^{∞} (with no singular points).

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^3 , with boundary data $g + \lambda$.

Then, for almost every constant λ , the free boundary is C^{∞} (with no singular points).

• This proves the Conjecture in \mathbb{R}^3 !

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^3 , with boundary data $g+\lambda$.

Then, for almost every constant λ , the free boundary is C^{∞} (with no singular points).

- This proves the Conjecture in \mathbb{R}^3 !
- In fact, we can take $g + \lambda \Psi$ ($\Psi > 0$), and for a.e. λ there are no singular points.

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^3 , with boundary data $g + \lambda$.

Then, for almost every constant λ , the free boundary is C^{∞} (with no singular points).

- This proves the Conjecture in \mathbb{R}^3 !
- In fact, we can take $g + \lambda \Psi$ ($\Psi > 0$), and for a.e. λ there are no singular points.
- What happens in higher dimensions?

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^3 , with boundary data $g+\lambda$.

Then, for almost every constant λ , the free boundary is C^{∞} (with no singular points).

- This proves the Conjecture in \mathbb{R}^3 !
- In fact, we can take $g + \lambda \Psi$ ($\Psi > 0$), and for a.e. λ there are no singular points.
- What happens in higher dimensions?

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^n , with boundary data $g + \lambda \Psi$.

Then, for almost every λ , the singular set has Hausdorff dimension (at most) n – 4.

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^3 , with boundary data $g + \lambda$.

Then, for almost every constant λ , the free boundary is C^{∞} (with no singular points).

- This proves the Conjecture in \mathbb{R}^3 !
- In fact, we can take $g + \lambda \Psi$ ($\Psi > 0$), and for a.e. λ there are no singular points.
- What happens in higher dimensions?

Theorem (Figalli-R.-Serra '19)

Let u_{λ} be the solution to the obstacle problem in \mathbb{R}^n , with boundary data $g + \lambda \Psi$.

Then, for almost every λ , the singular set has Hausdorff dimension (at most) n – 4.

• In other words: Generically, in \mathbb{R}^n , the singular set is very small!

Our proof is based on several ingredients:

1) Deeper understanding of singular points.

Our proof is based on several ingredients:

1) Deeper understanding of singular points.

We establish a new higher order expansion at (most) singular points.

- Deeper understanding of singular points.
 We establish a new higher order expansion at (most) singular points.
- 2) We can then separate singular points into different categories: either they are very regular or the set is smaller.

- Deeper understanding of singular points.
 We establish a new higher order expansion at (most) singular points.
- 2) We can then separate singular points into different categories: either they are very regular or the set is smaller.
- 3) Then, we prove a "cleaning Lemma": If u_{λ} has a singular point at x_0 , then there are no singular points for $u_{\lambda+\delta}$ in a ball of radius $\delta^{1/\kappa}$ (for a certain κ).

- Deeper understanding of singular points.
 We establish a new higher order expansion at (most) singular points.
- 2) We can then separate singular points into different categories: either they are very regular or the set is smaller.
- 3) Then, we prove a "cleaning Lemma": If u_{λ} has a singular point at x_0 , then there are no singular points for $u_{\lambda+\delta}$ in a ball of radius $\delta^{1/\kappa}$ (for a certain κ).
- 4) This gives a strong geometric information about the singular set; we pass this information to the projection on the λ-axis.

- Deeper understanding of singular points.
 We establish a new higher order expansion at (most) singular points.
- 2) We can then separate singular points into different categories: either they are very regular or the set is smaller.
- 3) Then, we prove a "cleaning Lemma": If u_{λ} has a singular point at x_0 , then there are no singular points for $u_{\lambda+\delta}$ in a ball of radius $\delta^{1/\kappa}$ (for a certain κ).
- 4) This gives a strong geometric information about the singular set; we pass this information to the projection on the λ -axis.
- 5) For almost every λ : In lower dimensions, we get no singular points; in higher dimensions we get an (n-4)-dimensional singular set.

On the singular set, we improve results of [Weiss '99], and [Figalli-Serra '17].

On the singular set, we improve results of [Weiss '99], and [Figalli-Serra '17].

Theorem (Figalli-R.-Serra '19)

Let u be the solution to the obstacle problem in \mathbb{R}^n .

Then, outside a set of Hausdorff dimension n-2, we have an expansion

$$u(x) = p_2(x) + p_3(x) + p_4(x) + O(|x - x_0|^{5-\varepsilon}),$$

On the singular set, we improve results of [Weiss '99], and [Figalli-Serra '17].

Theorem (Figalli-R.-Serra '19)

Let u be the solution to the obstacle problem in \mathbb{R}^n .

Then, outside a set of Hausdorff dimension n-2, we have an expansion

$$u(x) = p_2(x) + p_3(x) + p_4(x) + O(|x - x_0|^{5-\varepsilon}),$$

where p_2 is a quadratic polynomial (the blow-up at x_0),

On the singular set, we improve results of [Weiss '99], and [Figalli-Serra '17].

Theorem (Figalli-R.-Serra '19)

Let u be the solution to the obstacle problem in \mathbb{R}^n .

Then, outside a set of Hausdorff dimension n-2, we have an expansion

$$u(x) = p_2(x) + p_3(x) + p_4(x) + O(|x - x_0|^{5-\varepsilon}),$$

where p_2 is a quadratic polynomial (the blow-up at x_0), p_3 is a cubic polynomial (the "second blow-up"), etc.

On the singular set, we improve results of [Weiss '99], and [Figalli-Serra '17].

Theorem (Figalli-R.-Serra '19)

Let u be the solution to the obstacle problem in \mathbb{R}^n .

Then, outside a set of Hausdorff dimension n-2, we have an expansion

$$u(x) = p_2(x) + p_3(x) + p_4(x) + O(|x - x_0|^{5-\varepsilon}),$$

where p_2 is a quadratic polynomial (the blow-up at x_0), p_3 is a cubic polynomial (the "second blow-up"), etc.

• To prove this, we need to improve the expansion step by step, with a dimension reduction at each step... and actually each one works for a different reason!

On the singular set, we improve results of [Weiss '99], and [Figalli-Serra '17].

Theorem (Figalli-R.-Serra '19)

Let u be the solution to the obstacle problem in \mathbb{R}^n .

Then, outside a set of Hausdorff dimension n-2, we have an expansion

$$u(x) = p_2(x) + p_3(x) + p_4(x) + O(|x - x_0|^{5-\varepsilon}),$$

where p_2 is a quadratic polynomial (the blow-up at x_0), p_3 is a cubic polynomial (the "second blow-up"), etc.

- To prove this, we need to improve the expansion step by step, with a dimension reduction at each step... and actually each one works for a different reason!
- \bullet At order 5 ε we have to stop and we cannot control the errors anymore.

GMT Lemma

Lemma

We have a family of sets $E_{\lambda} \subset \mathbb{R}^n$ s.t.:

• The <u>union</u> $E = \bigcup_{\lambda} E_{\lambda}$ has

$$\dim_{\mathcal{H}}(E) \leq \beta$$

• For a certain k > 0, for any $x_0 \in E_{\lambda_0}$

$$\{\lambda - \lambda_0 > |x - x_0|^k\} \cap E_\lambda = \emptyset$$

Then, for almost every λ , we have

$$\dim_{\mathcal{H}}(E_{\lambda}) \leq \beta - k$$



GMT Lemma

Lemma

We have a family of sets $E_{\lambda} \subset \mathbb{R}^n$ s.t.:

• The <u>union</u> $E = \cup_{\lambda} E_{\lambda}$ has

$$\dim_{\mathcal{H}}(E) \leq \beta$$

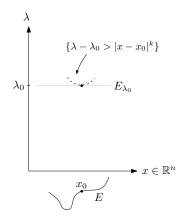
• For a certain k > 0, for any $x_0 \in E_{\lambda_0}$

$$\{\lambda - \lambda_0 > |x - x_0|^k\} \cap E_\lambda = \emptyset$$

Then, for almost every λ , we have

$$\dim_{\mathcal{H}}(E_{\lambda}) \leq \beta - k$$

• E_{λ} will be the singular set of u_{λ} .



GMT Lemma

Lemma

We have a family of sets $E_{\lambda} \subset \mathbb{R}^n$ s.t.:

• The <u>union</u> $E = \cup_{\lambda} E_{\lambda}$ has

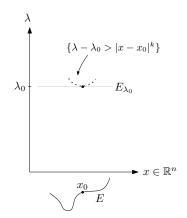
$$\dim_{\mathcal{H}}(E) \leq \beta$$

• For a certain k > 0, for any $x_0 \in E_{\lambda_0}$

$$\{\lambda - \lambda_0 > |x - x_0|^k\} \cap E_{\lambda} = \emptyset$$

Then, for almost every λ , we have

$$\dim_{\mathcal{H}}(E_{\lambda}) \leq \beta - k$$



- E_{λ} will be the singular set of u_{λ} .
- We need all dimension-reduction arguments for E, not only for each E_{λ} !

Combining our fine description of singular points with barrier arguments, we get:

Combining our fine description of singular points with barrier arguments, we get:

• An (n-1)-dimensional set where we have an expansion of order $5-\varepsilon$, and

$$\{\lambda - \lambda_0 > |x - x_0|^{4-\varepsilon}\} \cap E_{\lambda} = \emptyset$$

Combining our fine description of singular points with barrier arguments, we get:

ullet An (n-1)-dimensional set where we have an expansion of order 5-arepsilon, and

$$\{\lambda - \lambda_0 > |x - x_0|^{4-\varepsilon}\} \cap \mathcal{E}_{\lambda} = \emptyset$$

• An (n-2)-dimensional set where we have an expansion of order 3, and

$$\{\lambda - \lambda_0 > |x - x_0|^2\} \cap \mathcal{E}_{\lambda} = \emptyset$$

Combining our fine description of singular points with barrier arguments, we get:

ullet An (n-1)-dimensional set where we have an expansion of order 5-arepsilon, and

$$\{\lambda - \lambda_0 > |x - x_0|^{4-\varepsilon}\} \cap \mathcal{E}_{\lambda} = \emptyset$$

 \bullet An (n-2)-dimensional set where we have an expansion of order 3, and

$$\{\lambda - \lambda_0 > |x - x_0|^2\} \cap \mathcal{E}_{\lambda} = \emptyset$$

• An (n-3)-dimensional set where we have an expansion of order $2+\varepsilon$, and

$$\{\lambda - \lambda_0 > |x - x_0|^{1+\varepsilon}\} \cap \mathcal{E}_{\lambda} = \emptyset$$

Combining our fine description of singular points with barrier arguments, we get:

• An (n-1)-dimensional set where we have an expansion of order $5-\varepsilon$, and

$$\{\lambda - \lambda_0 > |x - x_0|^{4-\varepsilon}\} \cap \mathcal{E}_{\lambda} = \emptyset$$

• An (n-2)-dimensional set where we have an expansion of order 3, and

$$\{\lambda - \lambda_0 > |x - x_0|^2\} \cap \mathcal{E}_{\lambda} = \emptyset$$

• An (n-3)-dimensional set where we have an expansion of order $2+\varepsilon$, and

$$\{\lambda - \lambda_0 > |x - x_0|^{1+\varepsilon}\} \cap E_{\lambda} = \emptyset$$

• An (n-2)-dimensional set where we have an expansion of order 2+, and

$$\{\lambda - \lambda_0 > |x - x_0|^{2-\varepsilon}\} \cap E_{\lambda} = \emptyset$$

Combining this with the previous GMT Lemma, we get the desired result.

• Future work: We prove an analogous result for the Stefan problem.

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

Furthermore, the set of "singular times" has Hausdorff dimension $\leq \frac{1}{2}$.

ullet This result is new even in \mathbb{R}^2

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

- ullet This result is new even in \mathbb{R}^2
- To prove it, we proceed as in the elliptic setting, with t playing the role of λ .

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

- ullet This result is new even in \mathbb{R}^2
- ullet To prove it, we proceed as in the elliptic setting, with t playing the role of λ .
- However, several new difficulties arise in this setting!

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

- ullet This result is new even in \mathbb{R}^2
- ullet To prove it, we proceed as in the elliptic setting, with t playing the role of λ .
- However, several new difficulties arise in this setting!
- The expansion up to order 5ε is essential in order to get the dimension 1/2.

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

- ullet This result is new even in \mathbb{R}^2
- ullet To prove it, we proceed as in the elliptic setting, with t playing the role of λ .
- However, several new difficulties arise in this setting!
- The expansion up to order 5ε is essential in order to get the dimension 1/2.
- Is the $\frac{1}{2}$ sharp?

• Future work: We prove an analogous result for the Stefan problem.

Theorem (Figalli-R.-Serra '20)

Let u(t,x) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

- ullet This result is new even in \mathbb{R}^2
- ullet To prove it, we proceed as in the elliptic setting, with t playing the role of λ .
- However, several new difficulties arise in this setting!
- The expansion up to order $5-\varepsilon$ is essential in order to get the dimension 1/2.
- Is the $\frac{1}{2}$ sharp? We don't know, but it is <u>critical</u> in several ways.

Thank you!