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The system

Let α > 0 and (−∆)α be the differential operator with Fourier symbol
|ξ|2α. The Navier-Stokes equations with hypo/hyperdissipation on
R3 × [0,+∞) are given by{

∂tu + (u · ∇)u +∇p = − (−∆)αu
div u = 0

(NS-α)

where (u · ∇)u :=
∑3

i=1 ui∂iu =
∑3

i=1 ∂i (uiu) = div (u ⊗ u) . We
consider the Cauchy problem

u(·, 0) = u0 .

Taking the divergence of the first equation, we have

∆p = −div div (u ⊗ u) .
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The (local) energy (in)equality

Multiplying the equation by u,

1
2∂t |u|2 + div (u( |u|

2

2 + p)) = (−∆)αu · u .

For α = 1 this local energy equality reads as

1
2∂t |u|2 + div (u( |u|

2

2 + p)) = ∆ |u|
2

2 − |Du|2 .

Thus we have the global energy equality
1
2

d
dt

∫
|u(x , t)|2 dx = −

∫
|(−∆)α/2u(x , t)|2 dx .

The natural scaling associated to (NS-α) is given by

u 7→ uλ(x , t) := λ1−2αu
(

x
λ
,

t
λ2α

)
.

For 0 ≤ α < 5
4 , the kinetic energy E (u)(t) :=

∫
|u(x , t)|2 dx is

supercritical: E (uλ)(t) = λ4( 5
4−α)E (u)(t) .
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Notions of solutions

(i) Distributional solutions: u ∈ L2
loc(R3 × [0,+∞)).

(ii) Leray - Hopf solutions (Leray 1934, Hopf 1951): distributional
solutions with global energy inequality for a.e. t ≥ 0

1
2

∫
|u(t)|2 dx +

∫ t

0

∫
|(−∆)α/2u|2 dx dτ ≤ 1

2

∫
|u0|2 dx .

Existence was proved by Leray.
(iii) Suitable weak solutions: for α = 1, Leray solutions which satisfy

the local energy inequality

1
2∂t |u|2 + div

(
u
( |u|2

2 + p
))
≤ ∆ |u|

2

2 − |Du|2 .

(iv) Classical solutions: blow-up problem.
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The singular set

Let

Sing(u) := {(x , t) : u is not locally bounded around (x , t)},

SingT (u) := {t : Sing(u) ∩ R3 × {t} 6= ∅}.

Theorem (Leray’s estimate on singular times)
Let u be a Leray solution of (NS) in (0,∞). Then

H1/2(SingT (u)) = 0

and SingT (u) is a compact set.
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Leray’s short time existence

Lemma

For u0 ∈ H1, there exists a unique Leray solution starting from u0 in
[0,T ], where T = C

‖∇u0‖4
L2(R3)

, which is smooth in (0,T ).

Indeed, energy estimates on the differentiated equation give

d
dt

∫
|Du|2 dx +

∫
|D2u|2 dx ≤

∫
|Du|3 dx .

By Hölder and Sobolev inequality

‖Du‖3
L3 ≤ ‖Du‖3/2

L2 ‖D2u‖3/2
L2 ≤ ‖Du‖6

L2 + 1
4‖D

2u‖2
L2 .

Setting f (t) :=
∫
|Du|2 dx , it satisfies f ′ ≤ Cf 3, which implies that

the existence time of f is greater than Cf −2(0).
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Proof of Leray’s estimate on singular times

For every t ∈ SingT (u)∫
|Du|2(s, ·) dx ≥ 1

(t − s)1/2 ,

hence ∫ t+r

t−r

∫
|Du|2 dx dt ≥ r1/2.

Let δ > 0. Extract a Vitali covering {(ti − 5ri , ti + 5ri )} of SingT (u)

H1/2
δ (SingT (u)) ≤

∑
i

(5ri )1/2 ≤ C
∑

i

∫ ti +ri

ti−ri

∫
|Du|2 ≤

∫
|u0|2

Let δ → 0 and use the absolute continuity of the integral.
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Dimension of the (space-time) singular set

Theorem (Caffarelli, Kohn, Nirenberg ’82)
Let u be a suitable weak solution of (NS). Then

H1(Sing(u)) = 0.

H1 here is in fact the parabolic Hausdorff dimension (covering made
by cylinders rather than balls).

It is based on previous work by Scheffer.
It recovers Leray’s estimate.
It was recently extended to the hypodissipative range α ∈ [3/4, 1)
in [Tang, Yu ’15] and to the hyperdissipative range α ∈ (1, 5/4)
in [Katz and N. Pavlović, ’15], [Ozanski, ’20], [C., De Lellis,
Massaccesi ’18].
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Nonuniqueness of weak solutions

Conjecture (Jia, Sverak ’15)
Are L∞((0,T ); L3,∞(R3)) weak solutions nonunique?

The conjecture is implied by the fact that the spectrum of a certain
linearized operator crosses the imaginary axes. Numerical work by
[Guillod, Sverak ’17] suggests that this scenario happens.
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A.e. smooth wild solutions

Theorem [Buckmaster, C., Vicol ’18]
There exists β > 0 such that the following holds.
For T > 0, let u(1), u(2) be two smooth solutions of (NS) on [0,T ].
Then there exists a weak solution u of (NS) such that

(basic regularity)
u ∈ C0([0,T ]; Hβ(T3)) curl u ∈ C0([0,T ]; L1+β(T3)) ,
(data) u ≡ u(1) on [0, T

3 ], and u ≡ u(2) on [ 2T
3 ,T ] ,

(smoothness a.e.) u is smooth in [0,T ] \ ΣT where ΣT ⊂ (0,T ],
is a closed set of times with Hausdorff dimension < 1− β.
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Remarks

The first part of the statement was obtained by [Buckmaster,
Vicol, ’18].
The theorem implies nonuniqueness for any L2 initial data.
Indeed, consider a Leray solution from an L2 initial datum
u0 ∈ L2(R3). Wait a little time and find an interval [T0,T1] in
which it is smooth; define u1(t) = u(t + T0). Take u2 any shear
flow (with different initial datum).
The same proof works for the hypo/hyperdissipative
Navier-Stokes equation for any α ∈ (0, 5

4 ). This range was also
considered in [Luo, Titi, ’18].



Wild solutions of
the Navier-Stokes

equations

Maria Colombo

The
Navier-Stokes
equations
Notions of solutions

Partial regularity

Main result

Convex
integration
Inductive estimates

Gluing step

Perturbation step

Partial regularity and weak solutions at a glance
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How many bad solutions are there?

How many weak solutions of NS in the space of C0([0,T ]; L2(T3)) are
smooth? Call X ⊆ Y ⊆ Z the sets

Z := {v ∈ C0([0,T ]; L2(T3)) : v is a weak solution of NS}

X := Z ∩ C∞([0,T ]; L2(T3))

Y := {v ∈ Z : v is smooth on some subinterval of [0,T ]}.

Theorem [C., De Rosa, Sorella, in preparation ’20]
The set X is nowhere dense in Z. The set Y is meager in Z.

Nowhere dense sets
A set is called nowhere dense if the interior of its closure is empty.
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Convex integration scheme

We start from (NS) solved with an error (Navier-Stokes-Reynolds
system){

∂tvq + div (vq ⊗ vq) +∇pq + (−∆)αvq = div R̊q

div vq = 0 ,

With an inductive procedure we build a sequence (vq,Rq) such that
vq → v , Rq → 0 as q →∞.
Size and frequency of our objects are measured by δq → 0 and
λq →∞, respectively

λq+1 = λb
q, b >> 1, δq := λ−2β

q .
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Two steps of the iteration

Gluing step. Replace vq with v̄q which enjoys:
same iterative bounds as vq

better properties, e.g. v̄q is smooth by convolution, or v̄q is an
exact solution on some parts of its domain

It was fully exploited by [Isett ’17].
Perturbation step. Build vq+1 = v̄q + wq+1 and the stress

div Rq+1 =div (wq+1 ⊗ wq+1 + R̄q +∇wq+1)
+ ∂twq+1 + div (wq+1 ⊗ v̄q + v̄q ⊗ wq+1).

wq+1 is a combination of stationary solutions at higher frequency than
vq.
Initiated by [De Lellis, Székelyhidi], we follow the scheme of
[Buckmaster, Vicol ’18] (see also [Modena, Sattig, Székelyhidi ’18-’19]
and [Brué, C., De Lellis ’20]).
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div Rq+1 =div (wq+1 ⊗ wq+1 + R̄q +∇wq+1)
+ ∂twq+1 + div (wq+1 ⊗ v̄q + v̄q ⊗ wq+1).

wq+1 is a combination of stationary solutions at higher frequency than
vq.
Initiated by [De Lellis, Székelyhidi], we follow the scheme of
[Buckmaster, Vicol ’18] (see also [Modena, Sattig, Székelyhidi ’18-’19]
and [Brué, C., De Lellis ’20]).
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Inductive estimates

Error is small, of size δq+1

‖R̊q‖L1(T3) ≤ λ
−εR
q δq+1

vq is bounded in L2

‖vq‖L2(T3) ≤ C0 − δ
1
2q

vq and Rq live at frequency λq

‖R̊q‖1/7
H3(T3) + ‖vq‖1/4

H3(T3) ≤ λq

All estimates are intended uniform in time.
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Inductive estimates - the set of potential
singularities
We perform a Cantor-type construction. Consider the nested bad sets

[0,T ] ⊃ [T
3 ,

2T
3 ] = B0 ⊃ ... ⊃ Bq ⊃ Bq+1 ⊃ ...

Each Bq is a finite union of intervals and it satisfies

L 1(Bq+1)
L 1(Bq) ≤ λ

−ε/2
q

vq is an exact solution outside the bad set

Rq ≡ 0 on [0,T ] \ Bq

Never modify it again

vq+1 = vq on [0,T ] \ Bq

∩∞q=1Bq is the potential singular set ΣT . Its dimension is < 1.
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Local smooth solutions

one interval of Big Oom
-

TX
ti tix ,

Split any interval in Bq in much smaller intervals of size θq+1
t0 < t1 < ... < ti < ti+1 < ... Take{

vi solves (NS) in [ti−1, ti+1]
vi (ti−1) = vq(ti−1).

Let χi be a (steep) cutoff in time at scale θq+1 such that its gradient
lives at scale τq+1 = λ

−ε/2
q+1 θq+1.

i
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Gluing and error estimates
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We define the linear interpolation

v̄q =
∑

i
χi (t)vi (x , t)

which is an approximate solution with right-hand side given by

div (R̄q) =
∑

i
∂tχi (vi − vi+1)

+ χi (1− χi )div ((vi − vi+1)⊗ (vi − vi+1))
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Gluing and error estimates

We invert the divergence and estimate ‖R̄q‖L1 :

‖div−1(∂tχi (vi − vi+1))‖L1 ≤ ‖∂tχi‖L∞‖div−1(vi − vi+1)‖L1

≤ ‖∂tχi‖L∞‖div−1(vi − v̄q)‖L1

≤ τ−1
q+1

∫ ti+1

ti−1

|Rq|

≤ τ−1
q+1θq+1‖Rq‖L1

≤ λ−ε/2
q+1 δq+1.

The second term is better and relies on the choice of θq+1

‖vi − vi+1‖L2 ≤ θq+1‖∇Rq‖L2 ≤ λ−ε/4
q+1 δ

1/2
q+1.
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Geometric lemma

vq+1 = v̄q + wq+1 has to solve

∂t(v̄q + wq+1) + div ((v̄q + wq+1)⊗ (v̄q + wq+1)) +∇p
= ∆(v̄q + wq+1) + div Rq+1

Hence the new stress is

div Rq+1 =div (wq+1 ⊗ wq+1 + R̄q)
+ ∂twq+1 −∆wq+1 + div (wq+1 ⊗ v̄q + v̄q ⊗ wq+1).

Lemma
There exist a finite set Λ ⊆ S2 ∩Q3 and functions γξ such that for any
symmetric matrix R ∈ B1/2(Id)

R =
∑
ξ∈Λ

γ2
ξ(R)ξ ⊗ ξ.
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Mikado flows

There is a simple class of exact solutions of Euler in R3: Mikado flows,
introduced by [Daneri, Székelyhidi, ’17]. Given a certain direction ξ,
for simplicity take ξ = e3 and consider a cutoff ϕ ∈ C∞c (R2)

Wξ = We3 = ϕ(x1, x2)e3.

We can suitably rescale and periodize them.



Wild solutions of
the Navier-Stokes

equations

Maria Colombo

The
Navier-Stokes
equations
Notions of solutions

Partial regularity

Main result

Convex
integration
Inductive estimates

Gluing step

Perturbation step

Mikado flows

There is a simple class of exact solutions of Euler in R3: Mikado flows,
introduced by [Daneri, Székelyhidi, ’17]. Given a certain direction ξ,
for simplicity take ξ = e3 and consider a cutoff ϕ ∈ C∞c (R2)

Wξ = We3 = ϕ(x1, x2)e3.

We can suitably rescale and periodize them.



Wild solutions of
the Navier-Stokes

equations

Maria Colombo

The
Navier-Stokes
equations
Notions of solutions

Partial regularity

Main result

Convex
integration
Inductive estimates

Gluing step

Perturbation step

Intermittent Mikado flows?

t#FE
Given a finite set of directions ξ, Wξ are stationary solutions of Euler
with the following properties

‖Wξ‖L2 = 1
Wξ have mutually disjoint support∫
T3 Wξ ⊗Wξ = ξ ⊗ ξ

Wξ has frequency λq+1 and small support | supp Wξ| ≤ λ−2(1−β)
q+1 .
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Perturbation

wq+1 :=
∑
ξ∈Λ

γξ(Id − R̄q
δq+1

)δ1/2
q+1Wξ

Then looking only at low frequency terms we see that wq+1 ⊗ wq+1
cancels R̄q

wq+1 ⊗ wq+1 + R̄q ≈
∑
ξ∈Λ

γ2
ξ(Id − R̄q

δq+1
)δq+1

∫
T3

Wξ ⊗Wξ
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New errors: the one coming from the Laplacian

‖∇wq+1‖L1 ≤
∑
ξ

‖γ2
ξ(Id − R̄q

δq+1
)δq+1∇Wξ‖L1

≤
∑
ξ

‖γ2
ξ(Id − R̄q

δq+1
)δq+1‖L1‖∇Wξ‖L1

≤ δ1/2
q λq+1| supp Wξ|1/2

Lemma
Let p ∈ {1, 2}, 1 < ζ < τ , N ∈ N such that ζN+4 < τN . Let
f : T→ R be such that ‖Dj f ‖Lp ≤ Cf ζ

j and let g be a T/τ periodic
function. Then

‖fg‖Lp ≤ Cf ‖g‖Lp

‖div−1(fg)‖Lp ≤ Cf
‖g‖Lp

τ
.
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Time oscillations

Unfortunately, Mikado flows do not (barely) satisfy
| supp Wξ| ≤ λ−2

q+1δ
2
q+1.

For this reason, [Buckmaster, Vicol ’19] introduced time oscillations in
Wξ. In terms of Mikado flows, we consider approximate solutions of
Euler "shooting a parcel of fluid" in the Mikado tubes.
[Cheskidov, Luo ’20] proposed to use approximate stationary solutions
of NS called “viscous eddies”.
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New errors: the one coming from the oscillation

For the oscillation part of the error

div Rq+1,osc = div (wq+1 ⊗ wq+1 + R̄q)

=
∑
ξ∈Λ
∇[γξ(Id − R̄q

δq+1
)δ1/2

q+1]2
(

Wξ ⊗Wξ + R̄q

)
=
∑
ξ∈Λ
∇[γξ(Id − R̄q

δq+1
)δ1/2

q+1]2
(

Wξ ⊗Wξ −
∫

Wξ ⊗Wξ

)
Hence

‖Rq+1,osc‖L1 ≤
λ4

q
λq+1

‖Wξ‖L2 ≤ δq+1.
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The end

Thank you for your attention!
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