Wild solutions of the Navier-Stokes equations may be smooth for a.e. time

Maria Colombo

May 21th, 2020 ShanghaiTech University - PDE seminar via Zoom

Summary

Wild solutions of the Navier-Stokes equations

Maria Colomb

The Navier-Stok equations

Notions of solution Partial regularity Main result

Integration
Inductive estimate
Gluing step
Perturbation step

- 1 The Navier-Stokes equations
 - Notions of solutions
 - Partial regularity
 - Main result
- 2 Convex integration
 - Inductive estimates
 - Gluing step
 - Perturbation step

Maria Colombo

The Navier-Stokes equations

Partial regularity

Main result

Inductive estimates

Perturbation step

Let $\alpha>0$ and $(-\Delta)^{\alpha}$ be the differential operator with Fourier symbol $|\xi|^{2\alpha}$. The Navier-Stokes equations with hypo/hyperdissipation on $\mathbb{R}^3\times[0,+\infty)$ are given by

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \rho = -(-\Delta)^{\alpha} u \\ \operatorname{div} u = 0 \end{cases}$$
 (NS-\alpha)

where $(u \cdot \nabla)u := \sum_{i=1}^3 u^i \partial_i u = \sum_{i=1}^3 \partial_i (u^i u) = \operatorname{div}(u \otimes u)$. We consider the Cauchy problem

$$u(\cdot,0)=u_0$$
.

Taking the divergence of the first equation, we have

$$\Delta p = -\operatorname{div}\operatorname{div}\left(u\otimes u\right).$$

The system

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stokes equations

Partial regularity

Main result

integration
Inductive estimates
Gluing step

Let $\alpha>0$ and $(-\Delta)^{\alpha}$ be the differential operator with Fourier symbol $|\xi|^{2\alpha}$. The Navier-Stokes equations with hypo/hyperdissipation on $\mathbb{R}^3\times[0,+\infty)$ are given by

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla p = -(-\Delta)^{\alpha} u \\ \operatorname{div} u = 0 \end{cases}$$
 (NS- α)

where $(u \cdot \nabla)u := \sum_{i=1}^3 u^i \partial_i u = \sum_{i=1}^3 \partial_i (u^i u) = \operatorname{div}(u \otimes u)$. We consider the Cauchy problem

$$u(\cdot,0)=u_0$$
.

Taking the divergence of the first equation, we have

$$\Delta p = -\operatorname{div}\operatorname{div}\left(u\otimes u\right).$$

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stokes equations

Partial regularity
Main result

integration
Inductive estimates
Gluing step

Let $\alpha>0$ and $(-\Delta)^{\alpha}$ be the differential operator with Fourier symbol $|\xi|^{2\alpha}$. The Navier-Stokes equations with hypo/hyperdissipation on $\mathbb{R}^3\times[0,+\infty)$ are given by

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla p = -(-\Delta)^{\alpha} u \\ \operatorname{div} u = 0 \end{cases}$$
 (NS- α)

where $(u \cdot \nabla)u := \sum_{i=1}^3 u^i \partial_i u = \sum_{i=1}^3 \partial_i (u^i u) = \operatorname{div}(u \otimes u)$. We consider the Cauchy problem

$$u(\cdot,0)=u_0$$
.

Taking the divergence of the first equation, we have

$$\Delta p = -\mathrm{div}\,\mathrm{div}\,(u\otimes u).$$

The (local) energy (in)equality

the Navier-Stokes equations

Wild solutions of

Navier-Stokes equations

The

The (local) energy (in)equality

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stokes equations

Notions of solution
Partial regularity
Main result

Main result

Convex

Integration
Inductive estimates
Gluing step

Multiplying the equation by u,

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\left(u\left(\frac{|u|^2}{2} + p\right)\right) = (-\Delta)^{\alpha} u \cdot u.$$

For $\alpha=1$ this local energy equality reads as

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\big(u\big(\frac{|u|^2}{2} + \rho\big)\big) = \Delta \frac{|u|^2}{2} - |Du|^2\,.$$

Thus we have the global energy equality

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int |u(x,t)|^2\,\mathrm{d}x = -\int |(-\Delta)^{\alpha/2}u(x,t)|^2\,\mathrm{d}x\,.$$

The natural scaling associated to (NS- α) is given by

$$u \mapsto u_{\lambda}(x,t) := \lambda^{1-2\alpha} u\left(\frac{x}{\lambda}, \frac{t}{\lambda^{2\alpha}}\right)$$

For $0 \le \alpha < \frac{5}{4}$, the kinetic energy $E(u)(t) := \int |u(x,t)|^2 dx$ is supercritical: $E(u_\lambda)(t) = \lambda^{4(\frac{5}{4}-\alpha)} E(u)(t)$.

The (local) energy (in)equality

Wild solutions of the Navier-Stokes equations

The Navier-Stokes equations

Multiplying the equation by u,

$$\frac{1}{2}\partial_t|u|^2+\operatorname{div}\left(u(\frac{|u|^2}{2}+p)\right)=(-\Delta)^\alpha u\cdot u.$$

For $\alpha = 1$ this local energy equality reads as

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\left(u(\frac{|u|^2}{2} + \rho)\right) = \Delta \frac{|u|^2}{2} - |Du|^2.$$

Thus we have the global energy equality

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int |u(x,t)|^2\,\mathrm{d}x = -\int |(-\Delta)^{\alpha/2}u(x,t)|^2\,\mathrm{d}x.$$

The natural scaling associated to (NS- α) is given by

$$u\mapsto u_\lambda(x,t):=\lambda^{1-2lpha}u\left(rac{x}{\lambda},rac{t}{\lambda^{2lpha}}
ight).$$

For $0 \le \alpha < \frac{5}{4}$, the kinetic energy $E(u)(t) := \int |u(x,t)|^2 dx$ is supercritical: $E(u_{\lambda})(t) = \lambda^{4(\frac{5}{4} - \alpha)} E(u)(t)$.

Notions of solutions

Wild solutions of the Navier-Stokes equations

$$\frac{1}{2} \int |u(t)|^2 dx + \int_0^t \int |(-\Delta)^{\alpha/2} u|^2 dx d\tau \le \frac{1}{2} \int |u_0|^2 dx.$$

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\left(u\left(\frac{|u|^2}{2} + \rho\right)\right) \le \Delta \frac{|u|^2}{2} - |Du|^2$$

Notions of solutions

Wild solutions of the Navier-Stokes equations

(i) Distributional solutions: $u \in L^2_{loc}(\mathbb{R}^3 \times [0, +\infty))$.

$$\frac{1}{2} \int |u(t)|^2 dx + \int_0^t \int |(-\Delta)^{\alpha/2} u|^2 dx d\tau \le \frac{1}{2} \int |u_0|^2 dx$$

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\left(u\left(\frac{|u|^2}{2} + p\right)\right) \le \Delta \frac{|u|^2}{2} - |Du|^2.$$

Wild solutions of the Navier-Stokes equations

Maria Colombo

Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step (i) Distributional solutions: $u \in L^2_{loc}(\mathbb{R}^3 \times [0, +\infty))$.

(ii) Leray - Hopf solutions (Leray 1934, Hopf 1951): distributional solutions with global energy inequality for a.e. t > 0

$$\frac{1}{2} \int \! |u(t)|^2 \, \mathrm{d}x + \int_0^t \int \! |(-\Delta)^{\alpha/2} u|^2 \, \mathrm{d}x \, \mathrm{d}\tau \leq \frac{1}{2} \int \! |u_0|^2 \, \mathrm{d}x \, .$$

Existence was proved by Leray.

(iii) Suitable weak solutions: for $\alpha=1$, Leray solutions which satisfy the local energy inequality

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\left(u\left(\frac{|u|^2}{2} + p\right)\right) \le \Delta \frac{|u|^2}{2} - |Du|^2$$

Wild solutions of the Navier-Stokes equations

Maria Colombo

I he
Navier-Stokes
equations
Notions of solutions
Partial regularity
Main result

Convex integration Inductive estimates Gluing step Perturbation step

- (i) Distributional solutions: $u \in L^2_{loc}(\mathbb{R}^3 \times [0, +\infty))$.
- (ii) Leray Hopf solutions (Leray 1934, Hopf 1951): distributional solutions with global energy inequality for a.e. $t\geq 0$

$$\frac{1}{2} \int |u(t)|^2 \, \mathrm{d} x + \int_0^t \int |(-\Delta)^{\alpha/2} u|^2 \, \mathrm{d} x \, \mathrm{d} \tau \leq \frac{1}{2} \int |u_0|^2 \, \mathrm{d} x \, .$$

Existence was proved by Leray.

(iii) Suitable weak solutions: for $\alpha=1$, Leray solutions which satisfy the local energy inequality

$$\frac{1}{2}\partial_t |u|^2 + \operatorname{div}\left(u\Big(\frac{|u|^2}{2} + p\Big)\right) \leq \Delta \frac{|u|^2}{2} - |Du|^2.$$

The singular set

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Partial regularity

Convex integration Inductive estimate

Inductive estimates Gluing step Perturbation step Let

$$\operatorname{Sing}(u) := \{(x,t) : u \text{ is not locally bounded around } (x,t)\},$$

$$\operatorname{Sing}_{\mathcal{T}}(u) := \{t : \operatorname{Sing}(u) \cap \mathbb{R}^3 \times \{t\} \neq \emptyset\}.$$

Theorem (Leray's estimate on singular times)

Let u be a Leray solution of (NS) in $(0, \infty)$. Then

$$\mathcal{H}^{1/2}(\operatorname{Sing}_{\mathcal{T}}(u)) = 0$$

and $\operatorname{Sing}_{\mathcal{T}}(u)$ is a compact set

The singular set

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations Notions of solu

Notions of solution
Partial regularity
Main result

Convex integration Inductive estimates Gluing step Let

$$\operatorname{Sing}(u) := \{(x,t) : u \text{ is not locally bounded around } (x,t)\},$$

$$\operatorname{Sing}_{\mathcal{T}}(u) := \{t : \operatorname{Sing}(u) \cap \mathbb{R}^3 \times \{t\} \neq \emptyset\}.$$

Theorem (Leray's estimate on singular times)

Let u be a Leray solution of (NS) in $(0, \infty)$. Then

$$\mathcal{H}^{1/2}(\operatorname{Sing}_{\mathcal{T}}(u)) = 0$$

and $\operatorname{Sing}_{\mathcal{T}}(u)$ is a compact set.

Leray's short time existence

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Partial regularity

Convex integration

Integration Inductive estimates Gluing step

Lemma

For $u_0 \in H^1$, there exists a unique Leray solution starting from u_0 in [0,T], where $T = \frac{C}{\|\nabla u_0\|_{1/2(\mathbb{R}^3)}^4}$, which is smooth in (0,T).

Indeed, energy estimates on the differentiated equation give

$$\frac{d}{dt}\int |Du|^2 dx + \int |D^2u|^2 dx \le \int |Du|^3 dx$$

By Hölder and Sobolev inequality

$$||Du||_{L^3}^3 \le ||Du||_{L^2}^{3/2} ||D^2u||_{L^2}^{3/2} \le ||Du||_{L^2}^6 + \frac{1}{4} ||D^2u||_{L^2}^2$$

Setting $f(t) := \int |Du|^2 dx$, it satisfies $f' \le Cf^3$, which implies that the existence time of f is greater than $Cf^{-2}(0)$.

Leray's short time existence

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity Main result

Convex
integration
Inductive estimates
Gluing step
Perturbation step

Lemma

For $u_0 \in H^1$, there exists a unique Leray solution starting from u_0 in [0,T], where $T = \frac{\mathcal{C}}{\|\nabla u_0\|_{L^2(\mathbb{R}^3)}^4}$, which is smooth in (0,T).

Indeed, energy estimates on the differentiated equation give

$$\frac{d}{dt}\int |Du|^2\,dx + \int |D^2u|^2\,dx \le \int |Du|^3\,dx.$$

By Hölder and Sobolev inequality

$$||Du||_{L^{3}}^{3} \le ||Du||_{L^{2}}^{3/2} ||D^{2}u||_{L^{2}}^{3/2} \le ||Du||_{L^{2}}^{6} + \frac{1}{4} ||D^{2}u||_{L^{2}}^{2}.$$

Setting $f(t) := \int |Du|^2 dx$, it satisfies $f' \leq Cf^3$, which implies that the existence time of f is greater than $Cf^{-2}(0)$.

Proof of Leray's estimate on singular times

Wild solutions of the Navier-Stokes equations

For every $t \in \operatorname{Sing}_{\mathcal{T}}(u)$

$$\int |Du|^2(s,\cdot)\,dx \geq \frac{1}{(t-s)^{1/2}},$$

hence

$$\int_{t-r}^{t+r} \int |Du|^2 dx dt \ge r^{1/2}.$$

$$\mathcal{H}_{\delta}^{1/2}(\operatorname{Sing}_{\mathcal{T}}(u)) \leq \sum_{i} (5r_{i})^{1/2} \leq C \sum_{i} \int_{t_{i}-r_{i}}^{t_{i}+r_{i}} \int |Du|^{2} \leq \int |u_{0}|^{2}$$

Proof of Leray's estimate on singular times

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step Perturbation step For every $t \in \operatorname{Sing}_{\mathcal{T}}(u)$

$$\int |Du|^2(s,\cdot) \, dx \ge \frac{1}{(t-s)^{1/2}},$$

hence

$$\int_{t-r}^{t+r} \int |Du|^2 dx dt \ge r^{1/2}.$$

Let $\delta > 0$. Extract a Vitali covering $\{(t_i - 5r_i, t_i + 5r_i)\}$ of $\operatorname{Sing}_{\mathcal{T}}(u)$

$$\mathcal{H}_{\delta}^{1/2}(\operatorname{Sing}_{\mathcal{T}}(u)) \leq \sum_{i} (5r_{i})^{1/2} \leq C \sum_{i} \int_{t_{i}-r_{i}}^{t_{i}+r_{i}} \int |Du|^{2} \leq \int |u_{0}|^{2}$$

Let $\delta \to 0$ and use the absolute continuity of the integral.

Dimension of the (space-time) singular set

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity

Partial regularity Main result

Convex integration Inductive estimate

Inductive estimates
Gluing step
Perturbation step

Theorem (Caffarelli, Kohn, Nirenberg '82)

Let u be a suitable weak solution of (NS). Then

$$\mathcal{H}^1(\mathrm{Sing}(u))=0.$$

 \mathcal{H}^1 here is in fact the *parabolic* Hausdorff dimension (covering made by cylinders rather than balls).

- It is based on previous work by Scheffer.
- It recovers Leray's estimate
- It was recently extended to the hypodissipative range $\alpha \in [3/4,1)$ in [Tang, Yu '15] and to the hyperdissipative range $\alpha \in (1,5/4)$ in [Katz and N. Pavlović, '15], [Ozanski, '20], [C., De Lellis, Massaccesi '18].

Dimension of the (space-time) singular set

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity

Main result

integration
Inductive estimate
Gluing step
Perturbation step

Theorem (Caffarelli, Kohn, Nirenberg '82)

Let u be a suitable weak solution of (NS). Then

$$\mathcal{H}^1(\mathrm{Sing}(u))=0.$$

 \mathcal{H}^1 here is in fact the *parabolic* Hausdorff dimension (covering made by cylinders rather than balls).

- It is based on previous work by Scheffer.
- It recovers Leray's estimate.
- It was recently extended to the hypodissipative range $\alpha \in [3/4,1)$ in [Tang, Yu '15] and to the hyperdissipative range $\alpha \in (1,5/4)$ in [Katz and N. Pavlović, '15], [Ozanski, '20], [C., De Lellis, Massaccesi '18].

Nonuniqueness of weak solutions

Wild solutions of the Navier-Stokes equations

Maria Colombo

he avier-Stoke quations

Partial regularity

Convex integration Inductive estimates Gluing step Conjecture (Jia, Sverak '15)

Are $L^{\infty}((0,T);L^{3,\infty}(\mathbb{R}^3))$ weak solutions nonunique?

The conjecture is implied by the fact that the spectrum of a certain linearized operator crosses the imaginary axes. Numerical work by [Guillod, Sverak '17] suggests that this scenario happens.

A.e. smooth wild solutions

Wild solutions of the Navier-Stokes equations

Maria Colombi

Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step Perturbation step

Theorem [Buckmaster, C., Vicol '18]

There exists $\beta > 0$ such that the following holds.

For T > 0, let $u^{(1)}$, $u^{(2)}$ be two smooth solutions of (NS) on [0, T].

Then there exists a weak solution u of (NS) such that

- (basic regularity) $u \in C^0([0, T]; H^{\beta}(\mathbb{T}^3))$ $\operatorname{curl} u \in C^0([0, T]; L^{1+\beta}(\mathbb{T}^3)),$
- (data) $u \equiv u^{(1)}$ on $[0, \frac{7}{3}]$, and $u \equiv u^{(2)}$ on $[\frac{27}{3}, T]$,
- (smoothness a.e.) u is smooth in $[0, T] \setminus \Sigma_T$ where $\Sigma_T \subset (0, T]$ is a closed set of times with Hausdorff dimension $< 1 \beta$.

A.e. smooth wild solutions

Wild solutions of the Navier-Stokes equations

Maria Colomb

Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step Perturbation step

Theorem [Buckmaster, C., Vicol '18]

There exists $\beta > 0$ such that the following holds.

For T > 0, let $u^{(1)}$, $u^{(2)}$ be two smooth solutions of (NS) on [0, T].

Then there exists a weak solution u of (NS) such that

• (basic regularity)

$$u \in C^0([0,T]; H^{\beta}(\mathbb{T}^3)) \quad \text{curl } u \in C^0([0,T]; L^{1+\beta}(\mathbb{T}^3)),$$

- $\bullet \ \, (\mathsf{data}) \ u \equiv u^{(1)} \ \, \mathsf{on} \ \, [0, \tfrac{7}{3}], \qquad \mathsf{and} \qquad u \equiv u^{(2)} \ \, \mathsf{on} \ \, [\tfrac{27}{3}, \, T] \, ,$
- (smoothness a.e.) u is smooth in $[0, T] \setminus \Sigma_T$ where $\Sigma_T \subset (0, T]$ is a closed set of times with Hausdorff dimension $< 1 \beta$.

A.e. smooth wild solutions

Wild solutions of the Navier-Stokes equations

Maria Colomb

I he Navier-Stokes equations Notions of solution Partial regularity Main result

integration
Inductive estimates
Gluing step
Perturbation step

Theorem [Buckmaster, C., Vicol '18]

There exists $\beta > 0$ such that the following holds.

For T > 0, let $u^{(1)}$, $u^{(2)}$ be two smooth solutions of (NS) on [0, T].

Then there exists a weak solution u of (NS) such that

• (basic regularity)

$$u \in C^0([0,T]; H^{\beta}(\mathbb{T}^3))$$
 curl $u \in C^0([0,T]; L^{1+\beta}(\mathbb{T}^3))$,

- $\bullet \ \, (\mathsf{data}) \ u \equiv u^{(1)} \ \, \mathsf{on} \ \, [0, \tfrac{T}{3}], \qquad \mathsf{and} \qquad u \equiv u^{(2)} \ \, \mathsf{on} \ \, [\tfrac{2T}{3}, \, T] \, ,$
- (smoothness a.e.) u is smooth in $[0, T] \setminus \Sigma_T$ where $\Sigma_T \subset (0, T]$, is a closed set of times with Hausdorff dimension $< 1 \beta$.

Wild solutions of the Navier-Stokes equations

Maria Colomb

The
Navier-Stokes
equations
Notions of solution
Partial regularity
Main result

Convex integration Inductive estimates Gluing step Perturbation step

- The first part of the statement was obtained by [Buckmaster, Vicol, '18].
- The theorem implies nonuniqueness for any L^2 initial data. Indeed, consider a Leray solution from an L^2 initial datum $u_0 \in L^2(\mathbb{R}^3)$. Wait a little time and find an interval $[T_0, T_1]$ in which it is smooth; define $u^1(t) = u(t + T_0)$. Take u^2 any shear flow (with different initial datum).
- The same proof works for the hypo/hyperdissipative Navier-Stokes equation for any $\alpha \in (0, \frac{5}{4})$. This range was also considered in [Luo, Titi, '18].

Partial regularity and weak solutions at a glance

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution

Partial regularity

Main result

Convex

Inductive estimate

Gluing step

Perturbation step

Partial regularity and weak solutions at a glance

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution

Partial regularity Main result

.......

integratio

Inductive estimate

Gluing step

Perturbation step

Partial regularity and weak solutions at a glance

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution

Partial regularit

Main result

integratio

integratio

inductive estima

Gluing step

Perturbation step

How many bad solutions are there?

Wild solutions of the Navier-Stokes equations

Maria Colombo

Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step Perturbation step How many weak solutions of NS in the space of $C^0([0,T];L^2(\mathbb{T}^3))$ are smooth? Call $X\subseteq Y\subseteq Z$ the sets

$$Z:=\{v\in C^0([0,T];L^2(\mathbb{T}^3)): v \text{ is a weak solution of NS}\}$$

$$X:=Z\cap C^{\infty}([0,T];L^{2}(\mathbb{T}^{3}))$$

$$Y := \{v \in Z : v \text{ is smooth on some subinterval of } [0, T]\}.$$

Theorem [C., De Rosa, Sorella, in preparation '20]

The set X is nowhere dense in Z. The set Y is meager in Z.

Nowhere dense sets

A set is called nowhere dense if the interior of its closure is empty.

Convex integration scheme

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity

Main result

integration Inductive estimates

Inductive estimates
Gluing step
Perturbation step

We start from (NS) solved with an error (Navier-Stokes-Reynolds system)

$$\left\{ \begin{array}{l} \partial_t v_q + \operatorname{div} \left(v_q \otimes v_q \right) + \nabla p_q + (-\Delta)^\alpha v_q = \operatorname{div} \mathring{R}_q \\ \operatorname{div} v_q = 0 \,, \end{array} \right.$$

With an inductive procedure we build a sequence (v_q, R_q) such that $v_q \to v$, $R_q \to 0$ as $q \to \infty$.

Size and frequency of our objects are measured by $\delta_q \to 0$ and $\lambda_q \to \infty$, respectively

$$\lambda_{q+1} = \lambda_q^b, \quad b >> 1, \qquad \delta_q := \lambda_q^{-2\beta}.$$

Two steps of the iteration

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimate Gluing step Perturbation step Gluing step. Replace v_q with \bar{v}_q which enjoys:

- same iterative bounds as v_q
- \bullet better properties, e.g. \bar{v}_q is smooth by convolution, or \bar{v}_q is an exact solution on some parts of its domain

It was fully exploited by [Isett '17].

Perturbation step. Build $v_{q+1} = \bar{v}_q + w_{q+1}$ and the stress

$$\begin{split} \operatorname{div} R_{q+1} = & \operatorname{div} \left(w_{q+1} \otimes w_{q+1} + \bar{R}_q + \nabla w_{q+1} \right) \\ & + \partial_t w_{q+1} + \operatorname{div} \left(w_{q+1} \otimes \bar{v}_q + \bar{v}_q \otimes w_{q+1} \right). \end{split}$$

 w_{q+1} is a combination of stationary solutions at higher frequency than v_q .

Initiated by [De Lellis, Székelyhidi], we follow the scheme of [Buckmaster, Vicol '18] (see also [Modena, Sattig, Székelyhidi '18-'19] and [Brué, C., De Lellis '20]).

Two steps of the iteration

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimate Gluing step Perturbation step Gluing step. Replace v_q with \bar{v}_q which enjoys:

- same iterative bounds as v_q
- \bullet better properties, e.g. \bar{v}_q is smooth by convolution, or \bar{v}_q is an exact solution on some parts of its domain

It was fully exploited by [Isett '17].

Perturbation step. Build $v_{q+1} = \bar{v}_q + w_{q+1}$ and the stress

$$\begin{aligned} \operatorname{div} R_{q+1} = & \operatorname{div} \left(w_{q+1} \otimes w_{q+1} + \bar{R}_q + \nabla w_{q+1} \right) \\ & + \partial_t w_{q+1} + \operatorname{div} \left(w_{q+1} \otimes \bar{v}_q + \bar{v}_q \otimes w_{q+1} \right). \end{aligned}$$

 w_{q+1} is a combination of stationary solutions at higher frequency than v_q .

Initiated by [De Lellis, Székelyhidi], we follow the scheme of [Buckmaster, Vicol '18] (see also [Modena, Sattig, Székelyhidi '18-'19] and [Brué, C., De Lellis '20]).

Inductive estimates

Wild solutions of the Navier-Stokes equations

Inductive estimates

• Error is small, of size δ_{a+1}

$$\|\mathring{R}_q\|_{L^1(\mathbb{T}^3)} \le \lambda_q^{-\varepsilon_R} \delta_{q+1}$$

$$\|v_q\|_{L^2(\mathbb{T}^3)} \le C_0 - \delta_q^{\frac{1}{2}}$$

$$\|\mathring{R}_q\|_{H^3(\mathbb{T}^3)}^{1/7} + \|v_q\|_{H^3(\mathbb{T}^3)}^{1/4} \le \lambda_q$$

Inductive estimates

Wild solutions of the Navier-Stokes equations

Maria Colombo

Navier-Stoke equations

Notions of solution Partial regularity

Convex integration

Inductive estimates
Gluing step

ullet Error is small, of size δ_{q+1}

$$\|\mathring{R}_q\|_{L^1(\mathbb{T}^3)} \le \lambda_q^{-\varepsilon_R} \delta_{q+1}$$

• v_q is bounded in L^2

$$\|v_q\|_{L^2(\mathbb{T}^3)} \le C_0 - \delta_q^{\frac{1}{2}}$$

• v_q and R_q live at frequency λ_q

$$\|\mathring{R}_q\|_{H^3(\mathbb{T}^3)}^{1/7} + \|v_q\|_{H^3(\mathbb{T}^3)}^{1/4} \le \lambda_q$$

All estimates are intended uniform in time

Inductive estimates

Wild solutions of the Navier-Stokes equations

Maria Colombo

Navier-Stokes equations Notions of solut Partial regularit

integration
Inductive estimates
Gluing step

ullet Error is small, of size δ_{q+1}

$$\|\mathring{R}_q\|_{L^1(\mathbb{T}^3)} \le \lambda_q^{-\varepsilon_R} \delta_{q+1}$$

• v_q is bounded in L^2

$$\|v_q\|_{L^2(\mathbb{T}^3)} \le C_0 - \delta_q^{\frac{1}{2}}$$

• v_q and R_q live at frequency λ_q

$$\|\mathring{R}_q\|_{H^3(\mathbb{T}^3)}^{1/7} + \|v_q\|_{H^3(\mathbb{T}^3)}^{1/4} \le \lambda_q$$

All estimates are intended uniform in time.

Inductive estimates - the set of potential singularities

Wild solutions of the Navier-Stokes equations

mana colomb

Navier-Stok equations

Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step We perform a Cantor-type construction. Consider the nested bad sets

$$[0,T] \supset [\frac{T}{3}, \frac{2T}{3}] = B_0 \supset ... \supset B_q \supset B_{q+1} \supset ...$$

• Each B_a is a finite union of intervals and it satisfies

$$\frac{\mathscr{L}^1(B_{q+1})}{\mathscr{L}^1(B_q)} \le \lambda_q^{-\varepsilon/2}$$

• v_a is an exact solution outside the bad set

$$R_a \equiv 0$$
 on $[0, T] \setminus B_a$

Never modify it again

$$v_{q+1} = v_q$$
 on $[0, T] \setminus B_q$

 $\bigcap_{a=1}^{\infty} B_a$ is the potential singular set Σ_T . Its dimension is < 1.

singularities We perform a Cantor-type construction. Consider the nested bad sets

• Each B_a is a finite union of intervals and it satisfies

 $[0,T]\supset \left[\frac{T}{2},\frac{2T}{2}\right]=B_0\supset...\supset B_q\supset B_{q+1}\supset...$

Inductive estimates - the set of potential

equations

Wild solutions of

the Navier-Stokes

Inductive estimates

 $R_a \equiv 0$ on $[0, T] \setminus B_a$

Never modify it again

 $v_{a+1} = v_a$ on $[0, T] \setminus B_a$

 $\frac{\mathscr{L}^1(B_{q+1})}{\mathscr{L}^1(B_{\epsilon})} \le \lambda_q^{-\varepsilon/2}$

 $\bigcap_{q=1}^{\infty} B_q$ is the potential singular set Σ_T . Its dimension is < 1.

v_a is an exact solution outside the bad set

Inductive estimates - the set of potential singularities

Wild solutions of the Navier-Stokes equations

Maria Colomb

The Navier-Stolequations

Notions of solution

Main result

Convex

Inductive estimates

Gluing step

Perturbation step

 $\bigcap_{q=1}^{\infty} B_q$ is the potential singular set Σ_T . Its dimension is < 1.

Local smooth solutions

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity

Convex integration Inductive estimates Gluing step one interval of Ba

Split any interval in B_q in much smaller intervals of size θ_{q+1} $t_0 < t_1 < ... < t_i < t_{i+1} < ...$ Take

$$\begin{cases} v_i \text{ solves (NS) in } [t_{i-1}, t_{i+1}] \\ v_i(t_{i-1}) = v_q(t_{i-1}). \end{cases}$$

Let χ_i be a (steep) cutoff in time at scale θ_{q+1} such that its gradient lives at scale $\tau_{q+1} = \lambda_{q+1}^{-\varepsilon/2} \theta_{q+1}$.

Gluing and error estimates

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stok equations

Notions of solut Partial regularity

Main result

integration Inductive estimate

Gluing step

Perturbation st

We define the linear interpolation

$$\bar{v}_q = \sum_i \chi_i(t) v_i(x,t)$$

which is an approximate solution with right-hand side given by

$$\begin{aligned} \operatorname{div}\left(\bar{R}_{q}\right) &= \sum_{i} \partial_{t} \chi_{i} (v_{i} - v_{i+1}) \\ &+ \chi_{i} (1 - \chi_{i}) \operatorname{div}\left((v_{i} - v_{i+1}) \otimes (v_{i} - v_{i+1}) \right) \end{aligned}$$

Gluing and error estimates

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity

Convex integration Inductive estimates Gluing step

Perturbation step

We invert the divergence and estimate $\|\bar{R}_q\|_{L^1}$:

$$\begin{split} \|\operatorname{div}^{-1}(\partial_{t}\chi_{i}(v_{i}-v_{i+1}))\|_{L^{1}} &\leq \|\partial_{t}\chi_{i}\|_{L^{\infty}}\|\operatorname{div}^{-1}(v_{i}-v_{i+1})\|_{L^{1}} \\ &\leq \|\partial_{t}\chi_{i}\|_{L^{\infty}}\|\operatorname{div}^{-1}(v_{i}-\bar{v}_{q})\|_{L^{1}} \\ &\leq \tau_{q+1}^{-1}\int_{t_{i-1}}^{t_{i+1}}|R_{q}| \\ &\leq \tau_{q+1}^{-1}\theta_{q+1}\|R_{q}\|_{L^{1}} \\ &\leq \lambda_{q+1}^{-\varepsilon/2}\delta_{q+1}. \end{split}$$

The second term is better and relies on the choice of θ_{q+1}

$$\|v_i - v_{i+1}\|_{L^2} \le \theta_{q+1} \|\nabla R_q\|_{L^2} \le \lambda_{q+1}^{-\varepsilon/4} \delta_{q+1}^{1/2}.$$

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solutio

Convex integration Inductive estimate Gluing step Perturbation step $v_{q+1} = ar{v}_q + w_{q+1}$ has to solve

$$\begin{split} \partial_t (\bar{v}_q + w_{q+1}) + \operatorname{div} ((\bar{v}_q + w_{q+1}) \otimes (\bar{v}_q + w_{q+1})) + \nabla p \\ &= \Delta (\bar{v}_q + w_{q+1}) + \operatorname{div} R_{q+1} \end{split}$$

Hence the new stress is

$$\begin{split} \operatorname{div} R_{q+1} = & \operatorname{div} \left(w_{q+1} \otimes w_{q+1} + \bar{R}_q \right) \\ & + \partial_t w_{q+1} - \Delta w_{q+1} + \operatorname{div} \left(w_{q+1} \otimes \bar{v}_q + \bar{v}_q \otimes w_{q+1} \right). \end{split}$$

Lemma

There exist a finite set $\Lambda \subseteq \mathbb{S}^2 \cap \mathbb{Q}^3$ and functions γ_{ξ} such that for any symmetric matrix $R \in B_{1/2}(Id)$

$$R = \sum_{\xi \in \Lambda} \gamma_{\xi}^{2}(R) \xi \otimes \xi$$

Geometric lemma

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity Main result

Convex integration Inductive estimate Gluing step Perturbation step $v_{q+1} = \bar{v}_q + w_{q+1}$ has to solve

$$\begin{split} \partial_t (\bar{v}_q + w_{q+1}) + \operatorname{div} \left((\bar{v}_q + w_{q+1}) \otimes (\bar{v}_q + w_{q+1}) \right) + \nabla p \\ &= \Delta (\bar{v}_q + w_{q+1}) + \operatorname{div} R_{q+1} \end{split}$$

Hence the new stress is

$$\begin{aligned} \operatorname{div} R_{q+1} = & \operatorname{div} \left(w_{q+1} \otimes w_{q+1} + R_q \right) \\ & + \partial_t w_{q+1} - \Delta w_{q+1} + \operatorname{div} \left(w_{q+1} \otimes \overline{v}_q + \overline{v}_q \otimes w_{q+1} \right). \end{aligned}$$

Lemma

There exist a finite set $\Lambda\subseteq\mathbb{S}^2\cap\mathbb{Q}^3$ and functions γ_ξ such that for any symmetric matrix $R\in B_{1/2}(Id)$

$$R = \sum_{\xi \in \Lambda} \gamma_{\xi}^{2}(R) \xi \otimes \xi.$$

Maria Colombo

Navier-Stokes equations Notions of solution Partial regularity

Inductive estimate:
Gluing step
Perturbation step

There is a simple class of exact solutions of Euler in \mathbb{R}^3 : Mikado flows, introduced by [Daneri, Székelyhidi, '17]. Given a certain direction ξ , for simplicity take $\xi=e_3$ and consider a cutoff $\varphi\in C_c^\infty(\mathbb{R}^2)$

$$W_{\xi}=W_{e_3}=\varphi(x_1,x_2)e_3.$$

We can suitably rescale and periodize them

Maria Colombo

Navier-Stokes equations Notions of solution Partial regularity Main result

Convex integration Inductive estimates Gluing step Perturbation step There is a simple class of exact solutions of Euler in \mathbb{R}^3 : Mikado flows, introduced by [Daneri, Székelyhidi, '17]. Given a certain direction ξ , for simplicity take $\xi=e_3$ and consider a cutoff $\varphi\in C_c^\infty(\mathbb{R}^2)$

$$W_{\xi}=W_{e_3}=\varphi(x_1,x_2)e_3.$$

We can suitably rescale and periodize them.

Intermittent Mikado flows?

Wild solutions of the Navier-Stokes equations

Maria Colomb

Navier-Stok equations Notions of so

Main result

integration
Inductive estimates
Gluing step
Perturbation step

Given a finite set of directions ξ , W_{ξ} are stationary solutions of Euler with the following properties

- $||W_{\varepsilon}||_{L^2} = 1$
- W_{ξ} have mutually disjoint support

$$\int_{\mathbb{T}^3} W_{\xi} \otimes W_{\xi} = \xi \otimes \xi$$

• W_{ξ} has frequency λ_{q+1} and small support $|\operatorname{supp} W_{\xi}| \leq \lambda_{q+1}^{-2(1-\beta)}$.

EPFL

Intermittent Mikado flows?

Wild solutions of the Navier-Stokes equations

IVIAITA COIOITID

Navier-Stokes equations Notions of soluti Partial regularity Main result

integration
Inductive estimate
Gluing step
Perturbation step

Given a finite set of directions ξ , W_{ξ} are stationary solutions of Euler with the following properties

- $||W_{\varepsilon}||_{L^2} = 1$
- ullet W_{ξ} have mutually disjoint support

$$\bullet \ \int_{\mathbb{T}^3} W_{\xi} \otimes W_{\xi} = \xi \otimes \xi$$

• W_{ξ} has frequency λ_{q+1} and small support $|\operatorname{supp} W_{\xi}| \leq \lambda_{q+1}^{-2(1-eta)}$

Perturbation

Wild solutions of the Navier-Stokes equations

Maria Colombo

Navier-Stokes equations Notions of solution Partial regularity

integration
Inductive estimates
Gluing step
Perturbation step

$$w_{q+1} := \sum_{\xi \in \Lambda} \gamma_{\xi} (\operatorname{Id} - \frac{\bar{R}_q}{\delta_{q+1}}) \delta_{q+1}^{1/2} W_{\xi}$$

Then looking only at low frequency terms we see that $w_{q+1} \otimes w_{q+1}$ cancels \bar{R}_q

$$w_{q+1} \otimes w_{q+1} + \bar{R}_q \approx \sum_{\xi \in \Lambda} \gamma_{\xi}^2 (Id - \frac{\bar{R}_q}{\delta_{q+1}}) \delta_{q+1} \int_{\mathbb{T}^3} W_{\xi} \otimes W_{\xi}$$

New errors: the one coming from the Laplacian

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stok equations

Notions of solution

Partial regularity

Integration
Inductive estimates
Gluing step
Perturbation step

$$\begin{split} \|\nabla w_{q+1}\|_{L^{1}} &\leq \sum_{\xi} \|\gamma_{\xi}^{2} (\text{Id} - \frac{\bar{R}_{q}}{\delta_{q+1}}) \delta_{q+1} \nabla W_{\xi}\|_{L^{1}} \\ &\leq \sum_{\xi} \|\gamma_{\xi}^{2} (\text{Id} - \frac{\bar{R}_{q}}{\delta_{q+1}}) \delta_{q+1}\|_{L^{1}} \|\nabla W_{\xi}\|_{L^{1}} \\ &\leq \delta_{q}^{1/2} \lambda_{q+1} |\operatorname{supp} W_{\xi}|^{1/2} \end{split}$$

Lemma

Let $p \in \{1,2\}$, $1 < \zeta < \tau$, $N \in \mathbb{N}$ such that $\zeta^{N+4} < \tau^N$. Let $f : \mathbb{T} \to \mathbb{R}$ be such that $\|D^j f\|_{L^p} \le C_f \zeta^j$ and let g be a \mathbb{T}/τ periodic function. Then

$$\|fg\|_{L^p}\leq C_f\|g\|_{L^p}$$

$$\|\operatorname{div}^{-1}(fg)\|_{L^p} \leq C_f \frac{\|g\|_{L^p}}{\|g\|_{L^p}}.$$

Time oscillations

Wild solutions of the Navier-Stokes equations

Maria Colombo

The
Navier-Stokes
equations
Notions of solution
Partial regularity
Main result

Convex integration Inductive estimate Gluing step Perturbation step Unfortunately, Mikado flows do not (barely) satisfy

$$|\operatorname{supp} W_\xi| \leq \lambda_{q+1}^{-2} \delta_{q+1}^2.$$

For this reason, [Buckmaster, Vicol '19] introduced time oscillations in W_{ξ} . In terms of Mikado flows, we consider approximate solutions of Euler "shooting a parcel of fluid" in the Mikado tubes. [Cheskidov, Luo '20] proposed to use approximate stationary solutions of NS called "viscous addies"

Time oscillations

Wild solutions of the Navier-Stokes equations

Maria Colombo

I he
Navier-Stokes
equations
Notions of solution
Partial regularity
Main result

Convex
integration
Inductive estimate
Gluing step
Perturbation step

Unfortunately, Mikado flows do not (barely) satisfy

$$|\operatorname{supp} W_{\xi}| \leq \lambda_{q+1}^{-2} \delta_{q+1}^2.$$

For this reason, [Buckmaster, Vicol '19] introduced time oscillations in W_{ξ} . In terms of Mikado flows, we consider approximate solutions of Euler "shooting a parcel of fluid" in the Mikado tubes. [Cheskidov, Luo '20] proposed to use approximate stationary solutions of NS called "viscous eddies".

New errors: the one coming from the oscillation

Wild solutions of the Navier-Stokes equations

Maria Colombo

The Navier-Stoke equations

Notions of solution Partial regularity

Convex integration Inductive estimates Gluing step Perturbation step For the oscillation part of the error

$$\begin{aligned} \operatorname{div} R_{q+1,osc} &= \operatorname{div} \left(w_{q+1} \otimes w_{q+1} + \bar{R}_q \right) \\ &= \sum_{\xi \in \Lambda} \nabla \left[\gamma_{\xi} \left(Id - \frac{\bar{R}_q}{\delta_{q+1}} \right) \delta_{q+1}^{1/2} \right]^2 \left(W_{\xi} \otimes W_{\xi} + \bar{R}_q \right) \\ &= \sum_{\xi \in \Lambda} \nabla \left[\gamma_{\xi} \left(Id - \frac{\bar{R}_q}{\delta_{q+1}} \right) \delta_{q+1}^{1/2} \right]^2 \left(W_{\xi} \otimes W_{\xi} - \int W_{\xi} \otimes W_{\xi} \right) \end{aligned}$$

Hence

$$\|R_{q+1,osc}\|_{L^1} \le \frac{\lambda_q^4}{\lambda_{q+1}} \|W_{\xi}\|_{L^2} \le \delta_{q+1}.$$

The end

Wild solutions of the Navier-Stokes equations

Maria Colombo

he Iavier-Stokes quations

Partial regularity

Main result

integration

Inductive estimates

Perturbation step

Thank you for your attention!