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The Navier-Stokes equations

L’;sier-smkes R3 X [0, +Oo) are given by

equations
Ou+ (u-V)u+Vp= A u (NS )
divu =0

where (v - V)u := 2?21 u'Oiu = 2?21 Oi(v'u) = div (u® u). We
consider the Cauchy problem

u(-,0) = up.
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The R3 x [0, 4+0c0) are given by

Navier-Stokes
equations

(NS-«)

Oru+(u-V)u+Vp= —(=A)%u
divue =0

where (v - V)u := 2?21 u'Oiu = 2?21 Oi(v'u) = div(u® u). We
consider the Cauchy problem

u(-,0) = up.
Taking the divergence of the first equation, we have

Ap = —divdiv (v ® u).
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Maria Colombo —6t|U|2 —|—d1V(U(‘ | +P)) — (_ )au. u.

The
Navier-Stokes

equations For o =1 this local energy equallty reads as
1 ul? ul?
§6t|u|2 + div(u(% +p)) = A% — |Dul*.

Thus we have the global energy equality

3ar [l O de == [1(=8)"2u(x, ) dx.
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The
Navier-Stokes

equations For o =1 this local energy equallty reads as
1 ul? ul?
~0¢|u® + div(u(u +p)) = Au — |Dul*.
2 2 2
Thus we have the global energy equality
2dt/| u(x, ) dx = — /|( AY2u(x, £)[2 dx .
The natural scaling associated to (NS-a) is given by
t
t) ;= A2 x L .
u— ux(x,t) u<)\,)\2a

For 0 < a < 2, the kinetic energy E(u)(t) := [|u(x, t)]?dx is
supercritical: E(uy)(t) = NG E(u)(t) .
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(ii) Leray - Hopf solutions (Leray 1934, Hopf 1951): distributional
solutions with global energy inequality for a.e. t >0

t 1
%/|u(t)|2dx+/ /|(—A)°‘/2u|2dxdT§ §/|uo|2dx.
0

Existence was proved by Leray.
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(ii) Leray - Hopf solutions (Leray 1934, Hopf 1951): distributional
solutions with global energy inequality for a.e. t >0

t 1
%/|u(t)|2dx+/ /|(—A)°‘/2u|2dxdT§ §/|uo|2dx.
0

Existence was proved by Leray.

(i) Suitable weak solutions: for o = 1, Leray solutions which satisfy
the local energy inequality

%6t|u|2 + div (u(% + P)) < A% — |Dul?.

(iv) Classical solutions: blow-up problem.
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Sing(u) := {(x,t) : uis not locally bounded around (x, t)},

Sing,(u) := {t : Sing(u) "R x {t} # 0}.

Theorem (Leray's estimate on singular times)
Let u be a Leray solution of (NS) in (0,00). Then

H/2(Sing(u)) = 0

and Sing(u) is a compact set.
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For ug € H*, there exists a unique Leray solution starting from ug in
[0, T], where T = =S, which is smooth in (0, T).

||V“0||22(]R3)
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For ug € H*, there exists a unique Leray solution starting from ug in

__C g .
[0, T], where T = T which is smooth in (0, T).

Indeed, energy estimates on the differentiated equation give

d 2 2 12 3

— [ |Dul*dx + [ |D?ul*dx < [ |Dul’ dx.

dt
By Holder and Sobolev inequality

1
3/2 3/2
|Dullfs < [|Dull2%| Dl 2 < || Dul|E: + 3112wl

Setting f(t) := [ |Dul® dx, it satisfies f/ < Cf3, which implies that
the exnstence time of f is greater than Cf~2(0).
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/|Du| (s, )dx > ————= = )1/27

t+r
/ /|Du|2 dx dt > r'/2.
t—r

hence
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1
2
[ 1Du (s > s

t+r
/ /|Du|2 dx dt > r'/2.
t—r

Let 6 > 0. Extract a Vitali covering {(t; — 5r;, t; + 5r;)} of Sing(u)

ti+r;
Hy(Singr(@) < Y2 < €Y [ [10uP < [ luoP

ti—r;

hence

Let 6 — 0 and use the absolute continuity of the integral.
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Theorem (Caffarelli, Kohn, Nirenberg '82)

Let u be a suitable weak solution of (NS). Then

H*(Sing(u)) = 0.

H! here is in fact the parabolic Hausdorff dimension (covering made
by cylinders rather than balls).
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Theorem (Caffarelli, Kohn, Nirenberg '82)

Let u be a suitable weak solution of (NS). Then

H*(Sing(u)) = 0.

H! here is in fact the parabolic Hausdorff dimension (covering made
by cylinders rather than balls).
@ It is based on previous work by Scheffer.
@ It recovers Leray's estimate.
@ It was recently extended to the hypodissipative range a € [3/4,1)
in [Tang, Yu '15] and to the hyperdissipative range o € (1,5/4)

in [Katz and N. Pavlovi¢, '15], [Ozanski, '20], [C., De Lellis,
Massaccesi '18].
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Conjecture (Jia, Sverak '15)
Are L%((0, T); L3>°(R3?)) weak solutions nonunique?

The conjecture is implied by the fact that the spectrum of a certain
linearized operator crosses the imaginary axes. Numerical work by
[Guillod, Sverak '17] suggests that this scenario happens.
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Theorem [Buckmaster, C., Vicol '18]

There exists 8 > 0 such that the following holds.
For T >0, let u, u® be two smooth solutions of (NS) on [0, T].
Then there exists a weak solution u of (NS) such that

o (basic regularity)
u € CO([0, T]; HA(T?®)) curl u € CO([0, T]; LX+A(T?)),
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Theorem [Buckmaster, C., Vicol '18]

There exists 8 > 0 such that the following holds.
For T >0, let u, u® be two smooth solutions of (NS) on [0, T].
Then there exists a weak solution u of (NS) such that

o (basic regularity)
u € CO([0, T]; HA(T?®)) curl u € CO([0, T]; LX+A(T?)),

o (data) u=u® on [0, 1], and  u=u® on[2], T],

o (smoothness a.e.) u is smooth in [0, T] \ X1 where X1 C (0, T],
is a closed set of times with Hausdorff dimension < 1 — .




Remarks

Wild solutions of
the Navier-Stokes
equations

Maria Colombo

@ The first part of the statement was obtained by [Buckmaster,
Vicol, '18].

@ The theorem implies nonuniqueness for any L? initial data.
Indeed, consider a Leray solution from an L2 initial datum
up € L2(R3). Wait a little time and find an interval [T, T1] in
which it is smooth; define u!(t) = u(t + Ty). Take u? any shear
flow (with different initial datum).

@ The same proof works for the hypo/hyperdissipative

Navier-Stokes equation for any a € (0, 2). This range was also
considered in [Luo, Titi, '18].
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Maria Colombo smooth? Call X C Y C Z the sets

Z :={v e C%[0, T]; L*(T%)) : v is a weak solution of NS}

X = Z N C=([0, T]; LA(T3))

Y :={v € Z: v is smooth on some subinterval of [0, T]}.

Theorem [C., De Rosa, Sorella, in preparation '20]

The set X is nowhere dense in Z. The set Y is meager in Z.

Nowhere dense sets

A set is called nowhere dense if the interior of its closure is empty.
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We start from (NS) solved with an error (Navier-Stokes-Reynolds
system)

Convex
integration

Devg + div (vg ® vg) 4+ Vpg + (—A)%v, = div R,
divvg =0,

With an inductive procedure we build a sequence (vq, Ry) such that
vg — Vv, Ry —0as g — oo.

Size and frequency of our objects are measured by d; — 0 and
Ag — 00, respectively

Agr1=Ab b>>1, Ggi= A%
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@ better properties, e.g. V4 is smooth by convolution, or v, is an

exact solution on some parts of its domain

It was fully exploited by [Isett '17].

Convex
integration
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@ same iterative bounds as v,

@ better properties, e.g. V4 is smooth by convolution, or v, is an
exact solution on some parts of its domain

: It was fully exploited by [Isett '17].
Convex Perturbation step. Build vq11 = V4 + wgy1 and the stress

integration

div Rg41 =div (wgi1 ® wgi1 + Rg + Vwg1)
+ Orwgi1 + div (wgi1 ® Vg + Vg @ Wgy1).

Wq+1 is @ combination of stationary solutions at higher frequency than
Vg
Initiated by [De Lellis, Székelyhidi], we follow the scheme of
[Buckmaster, Vicol '18] (see also [Modena, Sattig, Székelyhidi '18-'19]
and [Brué, C., De Lellis '20]).
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@ vg is bounded in L2

1
Ivall2(rsy < Co = 8
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1Rgll zsy < Aq g1

@ vg is bounded in L2

l
Vgl 21ey < Co — 05

@ v, and R, live at frequency Aq
1/7
IRalsrsy + Vallksimsy < Aq

All estimates are intended uniform in time.
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WSl We perform a Cantor-type construction. Consider the nested bad sets

the Navier-Stokes
T 2T

equations
Maria Golombo [07 T] ») [g, T] =ByD..D Bq D Bq+1 D ...

@ Each B, is a finite union of intervals and it satisfies

‘i/ﬂl(BCH-l) < A—s/Z

A G

@ v, is an exact solution outside the bad set
Ry;=00n[0,T]\ B,
o Never modify it again
Va1 = Vg on [0, T]\ B

NgZ1 By is the potential singular set X.7. Its dimension is < 1.
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Ng=1Bq is the potential singular set X 7. Its dimension is < 1.
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Split any interval in By in much smaller intervals of size 041
<t <..<t<tq<.. Take

v; solves (NS) in [ti_1, tit1]
V;(t,'_l) = Vq(l’,'_l).

Let x; be a (steep) cutoff in time at scale 64,1 such that its gradient

. _y—€/2
lives at scale 7q41 = Ay 1 0g+1.
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—
“tgn << Ogu

We define the linear interpolation
Zx, Jvi(x, t)

which is an approximate solution with right-hand side given by
div (/T?q) = Z Oexi(vi — Vig1)

+ X,‘(l — X,')diV((V,' — V,'+1) ® (Vi - Vi+1))
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ldiv =" Gexi(vi = via))llix < 10l l1div = (vi = via)
<0l e l1div ™ (v = V)|

. tiy1
< Tq+1/ |Rql
ti—1

i—

< Tq+1 Og+1/|Rll 2

< )\q+1 6q+1.
The second term is better and relies on the choice of 04,1

c/451/2

||v,- - V/+1||L2 < 9q+1||VRq||L2 < )‘q+1 g+1-
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0t (Vg + wgi1) + div ((Vg + wg+1) ® (Vg + wet1)) + Vp
= A(Vg + wgt1) + div Rg41
Hence the new stress is

div Rq+1 =div (Wq+1 @ Wgt1 + :‘_?q)

+ ath+1 - AWq+1 + div (Wq+1 ® Vq + Vq X Wq+]_).
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0t (Vg + wgi1) + div ((Vg + wg+1) ® (Vg + wet1)) + Vp
= A(Vg + wgt1) + div Rg41
Hence the new stress is

div Rq+1 =div (Wq+1 @ Wgt1 + :‘_?q)

+ ath+1 - AWq+1 + div (Wq+1 ® Vq + Vq X Wq+]_).

There exist a finite set A € S> N Q? and functions ¢ such that for any
symmetric matrix R € By >(/d)

R=>Y %(RESE.

e
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cquations There is a simple class of exact solutions of Euler in R3: Mikado flows,
Maria Colombo introduced by [Daneri, Székelyhidi, '17]. Given a certain direction &,
for simplicity take £ = e3 and consider a cutoff ¢ € C>°(R?)

We = We, = p(x1, x2)e3.

We can suitably rescale and periodize them.

/;
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Given a finite set of directions &, W, are stationary solutions of Euler
with the following properties

o [[Wel2=1

o We have mutually disjoint support

o [ W@ W, =£(®¢

o W; has frequency Aqy1 and small support | supp We| < A

—2(1-p)
g+l
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1/2
W1 = Z%(’d -~ f )5q11
£eN

Then looking only at low frequency terms we see that w1 ® w1
cancels R,

Wor1 @ Wer1 + Ry ~Z’Y§ (Id —

R,
(5_ q+1/ W§®W§
£ at
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: c q

R
<Y v2ld - 5 L )oq il [V We |2
; q+1

< 64/*Xg1| supp We['/?

Lemma

Let pe {1,2}, 1 < (<7, N €N such that (N** < 7N Let
f: T — R be such that |Dif||,» < Cr¢/ and let g be a T/T periodic
function. Then

gl < Crllgller

||g||LP

Idiv =} (fg)llr < G
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Wesatadl  Unfortunately, Mikado flows do not (barely) satisfy
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For this reason, [Buckmaster, Vicol '19] introduced time oscillations in
We. In terms of Mikado flows, we consider approximate solutions of
Euler "shooting a parcel of fluid" in the Mikado tubes.

[Cheskidov, Luo "20] proposed to use approximate stationary solutions
of NS called “viscous eddies”.
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For the oscillation part of the error

div Rgt1,0sc = div (Wgt1 ® wg+1 + f_'\’q)

R _
= ZV[W’ﬁ(/d - ?:1)5}7/31]2(‘/‘/5 ® We + Rq)

EeN
R
= Vy(ld - 5—‘7)5}/31]2(‘/‘/5 ® We — / We ® Ws)
£en q+1

Hence
4

||Rq+1,osc||L1 < by 9 ||W§||L2 < 5q+1.
g+1
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Thank you for your attention!
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