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The Navier-Stokes system

{
∂tu + (u · ∇)u +∇p −∆u = f
div u = 0

on R3 × [0,T ] (NS)

Regime:

I Continuum description

I Homogeneous (density ρ = const)

I Incompressible

Conventional wisdom: In the above regime, the state of the fluid at future
times can in principle be predicted from the state of the fluid at the initial time
by solving the Navier-Stokes equations.



The Cauchy problem


∂tu + (u · ∇)u +∇p −∆u = f
div u = 0
u(·, 0) = u0

on R3 × [0,T ] (NS)

I Velocity field: u : R3 × [0,T ]→ R3

I Pressure: p : R3 × [0,T ]→ R

I External body force: f : R3 × [0,T ]→ R3



The Cauchy problem


∂tu + (u · ∇)u +∇p −∆u = f
div u = 0
u(·, 0) = u0

on R3 × [0,T ] (NS)

I Given u0 and f , we look for (u, p)

I We can deduce p from u

∆p = div(f − (u · ∇)u)



The energy (in)equality

I Multiplying the equation by u we get

(∂t −∆)
1
2
|u|2 + |∇u|2 + div

((
1
2
|u|2 + p

)
u
)

= f · u .

I Global energy equality:

1
2

∫
|u(x , t)|2 dx +

∫ t

0

∫
|∇u(x , s)|2 dx ds

=
1
2

∫
|u0(x)|2 dx +

∫ t

0

∫
f (x , s) · u(x , s) dx ds .



Energy (in)equality

I Energy:

Eu(t) :=
1
2

∫
|u(x , t)|2 dx

I Energy dissipation rate:

Du(t) =

∫ t

0

∫
|∇u(x , s)|2 dx ds

Assume f = 0. Then

Eu(t) + Du(t) = Eu(0) <∞ ∀ t > 0 .



Dimensional analysis and strong solutions

I Scaling symmetry:

uλ(x , t) = λu(λx , λ2t) , fλ(x , t) = λ3f (λx , λ2t)

I Dimensional analysis:

[x ] = L , [u] = L−1 , [t ] = L2 to have [∆u] = [∂tu]

I Critical spaces have dimensionless norm, e.g. L∞t L3
x

I NS is supercritical: The energy Eu(t) = 1
2

∫
|u(x , t)|2 ds satisfies

Euλ(x , t) =
1
λ

Eu(λ2t) .



Heuristic explanation

We expect well-posedness when the parabolic regularization beats the
non-linearity:

(u · ∇)u << ∆u .

I Assume:
u ∼ A , supp u ∼ Bµ

I It holds
(u · ∇)u ∼ A2µ−1 , ∆u ∼ Aµ−2

I Critical scaling

A2µ−1 = Aµ−2 =⇒ A = µ−1 =⇒ ‖u‖L3 = 1



Classical solutions

Given u0 and f smooth and compactly supported, we look for global, smooth
solutions to (NS) with bounded energy.

I Well-posedness when u0 is small

I Well-posedness for small times

Millennium problem
Assume u0 ∈ C∞c and f = 0. Is there a global smooth solutions to (NS)?



Leray-Hopf solutions

Let u0 ∈ L2, f ∈ L1
t L2

x .

I [Leray ’34], [Hopf ’51]: Global solutions to (NS) in the class

u ∈ L∞t L2
x ∩ L2

t H1
x ;

I u(·, 0) = u0;

I Energy inequality:

1
2

∫
|u(x , t)|2 dx +

∫ t

0

∫
|∇u(x , s)|2 dx ds

≤ 1
2

∫
|u0(x)|2 dx +

∫ t

0

∫
f (x , s) · u(x , s) dx ds .



Properties of Leray-Hopf solutions

I Suitability condition:

(∂t −∆)
1
2
|u|2 + |∇u|2 + div

((
1
2
|u|2 + p

)
u
)
≤ f · u .

I Weak-strong uniqueness: Leray-Hopf solutions agree with strong
solutions.

I Partial regularity: If f ∈ L5/2+
x,t then

P1(singular set) = 0 ,
(
H 1/2(singular times) = 0

)
,

[Caffarelli-Kohn-Nirenberg ’82].



Weak solutions become relevant if the strong solutions break down.



Uniqueness

The Navier-Stokes equations are used for predicting fluid flows.

I If there is no blow-up, then there is perhaps no need to consider
Leray-Hopf solutions.

I If there is blow-up, then the solution may be continued as a suitable
Leray-Hopf solution. Is it unique?



Ladyzhenskaya’s example

In 1969, Ladyzhenskaya constructed an example of non-uniqueness for (NS)
within a Leray-Hopf-type class.

I Self-similarly shrinking domain
I Presence of an external body force
I Non-standard boundary conditions (inhomogeneous, for the stream

function)

The example described here can provoke “displeasure” for only one reason.
It has been constructed for boundary conditions of type (18) but not for
adhesion conditions... The examples presented here are interesting to me in
that they refute the entrenched opinion on the “naturalness” for nonstationary
problems of physics and mechanics of the class of solutions which have finite
energy norm.



Recent progress

I Convex integration method:
I Non-uniqueness of weak solutions to (NS) in

u ∈ Ct H
β
x , for some β > 0 ,

[Buckmaster-Vicol ’19].
I Non-uniqueness in Lq

t L∞x , q < 2 and Ct L
p
x , p < 2. [Cheskidov-Luo ’20].

I The program of Jia, Sverak, and Guillod:
I Bifurcation from large self-similar solutions.

Need to prove the existence of an unstable self-similar background
[Jia-Sverak ’14, ’15].

I Numerical evidence of instability [Guillod-Sverak ’17].

I [Albritton-B.-Colombo ’21]: Rigorous proof of the prediction of
Jia-Sverak-Guillod in the presence of an external body force.



Theorem (Buckmaster, Colombo, Vicol)
There exists β > 0 such that the following holds.
For T > 0, let u(1), u(2) be two smooth solutions of (NS) on [0,T ]. Then there
exists a weak solution u of (NS) such that
I Regularity:

u ∈ C0([0,T ]; Hβ(T3)

I Data:
u ≡ u(1) on [0,T/3] and u ≡ u(2) on [2T/3,T ]

I Smoothness a.e. u is smooth in [0,T ] \ ΣT where ΣT ⊂ (0,T ], is a
closed set of times with Hausdorff dimension < 1− β.



Convex integration in fluid mechanics

Initiated by [De Lellis-Székelyhidi], we follow the scheme of [Bukmaster-Vicol,
’18] (see also [Modena, Sattig, Székelyhidi, ’20]).

Iterative scheme: We build (uq , pq ,Rq)q∈N such that{
∂tuq + div(uq ⊗ uq) +∇pq −∆uq = − div Rq ,

div uq = 0,

uq → u in C0
t L2

x , Rq → 0 in C0
t L1

x .



Convex integration in fluid mechanics

We make the Ansatz
uq+1 := uq + a(Rq)wλ,

where

I λ = λq+1 � λq is the frequency and is much bigger than the typical
oscillations in uq ;

I wλ(x) = w(λx), where w is the building block, a high frequency,
concentrated vector field.

I a(Rq) is a slow function.



Cancellation of previous error

The new error is obtained as

− div Rq+1 = ∂t (a(Rq)wλ) + div(a(Rq)wλ ⊗ uq + uq ⊗ a(Rq)wλ)︸ ︷︷ ︸
div(L)

+ div(a(Rq)2wλ ⊗ wλ − Rq)︸ ︷︷ ︸
div(NL)

.

We hope that
L ,NL� |Rq | .

I Estimate of L: The space concentration ensure that L is small in L1

I Estimate of NL: We take w such that the low frequency interaction in
w ⊗ w is of order 1∫

wλ ⊗ wλ dx =

∫
w ⊗ w dx ≈ 1

and a(Rq) ≈
√

Rq .



A constraint on regularity coming from scaling

The cancellation of the error imposes

‖wλ‖L2 = ‖w‖L2 ∼ 1 .

The Sobolev inequality implies:

‖Dwλ‖L6/5 = λ‖Dw‖L6/5 ≥ Cλ‖w‖L2 ∼ λ .

Therefore,
‖Du‖L6/5 ∼

∑
q

‖Dwq‖L6/5 = +∞ .

No hope to go beyond ∇u ∈ C0
t L6/5

x without changing substantially the
scheme.



A result for 2d-Euler

When d = 2, the argument above implies that ∇u /∈ C0
t L1

x .

Theorem (B.- Colombo ’21)
There exists a non-trivial solution u ∈ C0([0, 1]; L2(T2)) to (EU) s.t.
I ω = ∇× u ∈ C0([0, 1]; L1,∞(T2));
I u(0, ·) = 0.

Moreover, u ∈ C0([0, 1]; W s,p(T2)) for any s ∈ (0, 1) and p ∈ (1, 2
1+s ).



The Jia-Sverak-Guillod picture

Let α0 be a −1-homogeneous, div-free velocity field. For any σ > 0 consider
a self-similar solution to (NS)

ūσ(x , t) =
1√
t
Ūσ
(

x√
t

)
with uσ(x , 0) = σα0

I When σ << 1 existence and uniqueness is guaranteed because the
initial condition is small in L3,∞.

I For generic σ > 0 the existence is guaranteed by [Jia-Sverak ’14],
uniqueness may fail.



Similarity variables

Let u be a solution to (NS).

I Change of variables: ξ = x/
√

t , τ = log(t) ∈ (−∞,T )

u(x , t) =
1√
t
U(ξ, τ) ,

I NS in similarity variables: (ξ, τ) ∈ R3 × (−∞,T )

∂τU − 1
2

(1 + ξ · ∇)U −∆U + U · ∇U +∇P = 0

For any σ > 0, Ūσ is a steady state of the (NS) equation in similarity variables.



The Jia-Sverak-Guillod picture

Linearized operator around the steady-state Ūσ:

−LσU = −1
2

(1 + ξ · ∇)U −∆U + P(Ūσ · ∇U + U · ∇Ūσ) .

I Lσ is stable when σ is small enough, i.e.

σ(Lσ) ⊂ {Reλ < 0}

I If σ(Lσ) crosses the Imaginary axis at σ = σ0 > 0 (bifurcation), then we
expect non uniqueness for (NS) with initial condition σα0, σ ≥ σ0.

Theorem (Jia-Sverak ’15)
Suppose (A) Hopf bifurcation or (B) saddle-node bifurcation. Then, upon
truncating properly, there exist two distinct Leray-Hopf solutions with identical
compactly supported data u0, and |u0| = O(1/|x |) at x = 0.

[Guillod-Sverak ’17]: Numerical evidence of pitchfork bifurcation.



Main results

Theorem (Albritton-B.-Colombo ’21, ’22)
Let Ω be R3, a smooth bounded domain, or T3. Then, there exists u and ū,
two distinct suitable Leray-Hopf solutions to (NS) with identical body force
f ∈ L1

t L2
x and u(·, 0) = ū(·, 0) = 0. When Ω is a bounded domain, u and ū

satisfy no-slip boundary conditions and f is supported far away from the
boundary.



Elements of proof

I Construction of Ū, a smooth, unstable vortex ring with compact support
in R3

I Construction of the unstable manifold associated to Ū

I We glue nonunique solutions of (NS) on R3 to solutions on bounded
domains and T3



What’s next

I Connection between fluid dynamics instability and non-uniqueness

I Classical stability/instability results

I Vishik’s proof of the sharpness of Yudovich class

I Construction of unstable vortex-rings

I Proof of the main Theorem

Thank you for your attention!


