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Introduction

Some models

We are going to consider nonlinear dispersive PDEs with potentials such as

» Cubic nonlinear Schrédinger (NLS)

iBeu — ou+ V(x)u = |ul’u, x€eR

> Quadratic Klein-Gordon (KG)

Rut (R +m +V(x)u=1>, xeR

» Quadratic NLS

iBeu — Au+ V(X)u = o, x e R?

These are just some examples (for which we have results)
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Introduction

Main features of these problems:

v

Low dimensions and low power nonlinearity.

v

V = V/(x) is a real potential, sufficiently regular, decaying.

(We will impose some spectral assumptions on V)

v

Interested in Cauchy problem for small initial data.

Global behavior of solutions, and scattering/asymptotics as t — +00.

\{

Main motivation is the full asymptotic stability of special solutions
of nonlinear evolution equations, such as solitons, kinks. ..

where models above appear when linearizing around these solutions.
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Motivation and Examples

1. Kink for the ¢* model

X

Fo-Ro=~U®6), U=,0-4F, qSo(x):tanh(ﬁ) (1)

2. Traveling Kinks for defocusing mKdV
deu+ u = —8(u), Beo (X + ct) = Veho (Ve(x + xo + ct))
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Introduction

Motivation and Examples

1. Kink for the ¢* model
2 2 gy _ 1l o0 _ X
ho—do=~U0), U=,0-6  aol)=tann (=) (1)
2. Traveling Kinks for defocusing mKdV
deu+ u = -0, (), Beo (X + ct) = Veho (Ve(x + xo + ct))

3. Vortices for (reduced) 2d Ginzburg-Landau model, with energy
_ [T (99 N2 N2 5 1o o
EM—A [(52) + (52 + 25 + 30— 7] o

N B
¢(p) ~ 1—272+0(p Y, po o
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Introduction

>In Pp—FPp=¢d—¢> let ¢p=c¢o+v, smallv:
v — B2v = v — 3¢gv — 3gov’ — v*

~ 8t2v+(—8f+2+ V(x))v:—3¢ov2—v3, (2)

with V = —3cosh™?(x/v/2).
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Introduction

>In Pp—FPp=¢d—¢> let ¢p=c¢o+v, smallv:
O2v — 92v = v — 3¢av — 3¢ov® — VvV
~ 8t2v+(—8§+2+ V(x))v:—3¢0v2—v3, (2)
with V = —3cosh™?(x/v/2).
— 1d Klein-Gordon with a Potential and Quadratic Nonlinearity.

» The question of asymptotic stability for ¢y becomes that of

small data global-in-time decay and scattering for v in (2).
> Ideal result for these types of equations:
¢ = M(¢o) + D(t,x) + R(t,x)
M(¢o) = modulated version of ¢

D(t,x) = is a discrete component (w/ vanishing amplitude)

R(t,x) = is a dispersing radiation component
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Introduction

Other notions of stability
In the example above one has the conserved energy
1
E(0) = [ 00) + (0.0 + (1~ 0 ox.
R

Look at ¢ = ¢o + v1, Oep = vz, v = (v1, W), ||V(0)||l-/1><L2 <e
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Introduction

Other notions of stability

In the example above one has the conserved energy
1
E(0) = [ 00) + (0.0 + (1~ 0 ox.
R

Look at ¢ = ¢o + v1, Oep = vz, v = (v1, W), ||V(0)||l-/1><L2 <e
> Orbital Stability (in the Energy space):
sup inf, 16(2, - +x0) = oy < €
Due to Henry-Perez-Wreszinski (‘82).
> Local Asymptotic Stability (in the Energy space): for any bounded interval /
t_'jQOO V(2 20y = O-

Due to Martel-Munoz-Kowalczyk (‘15).
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General difficulties and methods

> Note that, for quasilinear equations, e.g., Euler (vortices), water waves
(traveling / solitary waves) . ..the above notions are likely not relevant,
and only full asymptotic stability is.
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Introduction

General difficulties and methods

> Note that, for quasilinear equations, e.g., Euler (vortices), water waves
(traveling / solitary waves) . ..the above notions are likely not relevant,
and only full asymptotic stability is.

> Loosely speaking, the global-in-time theory for dispersive/wave
equations relies on the use of dispersive properties to control
nonlinear interactions.
> Low power and/or dimension — Slow decay
— cannot rely on “linear” theory, (e.g. L” decay, local decay, Strichartz)

— expect nonlinear structures to play key role,
and nonlinear asymptotic phenomena

> In the free/flat V = 0 case, can try to use “classical” methods, e.g.,
vectorfields, normal forms theory, multilinear estimates . . .

F. Pusateri
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Introduction

> Several issues in the perturbed/distorted V # 0 case:
» Lack of invariance (and commuting vectorfields)
> No conservation of momentum — no standard Fourier analysis

> More nonlinear and coherent/resonant interactions . ..

» Want to use the distorted Fourier transform (FT adapted to the
Schrodinger operator H = —A + V) and develop multilinear harmonic
analysis in distorted frequency space.

» Fourier-based techniques have been successful in the V = 0 case

(see for example Germain-Masmoudi-Shatah, Gustafson-Nakanishi-Tsai,
lonescu-Pausader, lonescu-P. ...)
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dFT

Distorted Fourier Transform (dFT)

» Look at solutions ¥ of
—AY + V(X = p.

» For 11 = |k|? have bounded solutions 1(x, k) ~ ** as |x| — oo

» Can also have eigenfunctions ¢;(x) corresponding to negative
eigenvalues pi1,...,uny <0
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dFT

Distorted Fourier Transform (dFT)

» Look at solutions ¥ of
—AY + V(X = p.

» For 11 = |k|? have bounded solutions 1(x, k) ~ ** as |x| — oo

» Can also have eigenfunctions ¢;(x) corresponding to negative
eigenvalues pi1,...,uny <0

» The distorted Fourier transform is given by
FF)(K) = F(k) = e / D) dx, = / FH(x)F(x) dx
R4 RY
Fx) = / U KT dk + 3 B (x)

(Weyl-Kodaira-Titchmarsh (theory), Ikebe, Alsholm-Schmidt,
Agmon (SR potentials) ...)
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> In our models we will assume V smooth, decaying, no discrete spectrum.
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dFT

> In our models we will assume V smooth, decaying, no discrete spectrum.

» DFT diagonalizes Hy := —A + V on the continuous spectrum

—A+ V= FHk]PF.

» Wave operators are

. (—AV) A 13
W, =s— lim " (A+V)gtA — 717
t—oo

Hy and Hp are unitary equivalent through wave operators
» Spectral Theory and Wave operators:
d = 1: Deift-Trubowitz (‘80s), Weder (~ ‘00) ...

d > 2: Agmon, Kato, Kuroda (< ‘80s), Yajima (‘90s), Weder (‘03),
Beceanu-Schlag (‘10s) ...
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Consider
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> Define the profile in Fourier f = e "=2+V)y e F(t, k) = e_"t“‘lzﬂ(t“7 k)
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Distorted Duhamel’s formula

Consider

iOeu — Au+ V(x)u = o

> Define the profile in Fourier f = e "=2+V)y e F(t, k) = e_"t“‘lzﬂ(t“7 k)

i0:F(t, k) = e_it|k|2f(u2)
= // KPP E (b (£, m) u(k, €, m) dédm,
itk m) = [ GOR)(x, 00 (x, m) dx

> We call i the “nonlinear spectral distribution” (NSD).
> In the free case u(k, ¢, m) :=d(k —£—m).

For V # 0 do not have “conservation of momentum” kK —¢ — m = 0.
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NSD and oscillations

?( T7 k) - ?(tv 0)

T . ~ ~
_ —i/ // IR E b )F(, m) (k. €, m) dedm dt
0
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NSD and oscillations

?( T7 k) - ?(tv 0)

T . ~ ~
_ —i/ // IR E b )F(, m) (k. €, m) dedm dt
0

>
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<= control the (time-frequency) integral

<= exploit oscillations
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F. Pusateri




dFT

NSD and oscillations

?(Tv k) _?(tv 0)
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0

» Understand solution
<= control the (time-frequency) integral

<= exploit oscillations
> Need to analyze the structure and singularities of .

Will see a significant difference in d =1 vs d > 1.
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dFT

NSD and oscillations

?(Tv k) _?(tv 0)
T it(— k|2 012 2y~ ~
= —i/ // M IKTHIETHmEYE 0V (£, m) u(k, £, m) dbdm dt
0

» Understand solution
<= control the (time-frequency) integral

<= exploit oscillations
> Need to analyze the structure and singularities of .
Will see a significant difference in d =1 vs d > 1.

» Want to develop all necessary harmonic analysis tools.

F. Pusateri




Results in 1d

Quadratic Klein-Gordon (w/ Pierre Germain)

Consider the equation
Bfu—i—(—af—l—l—l— V(x))u:a(x)u2+~~~ (KG)

x— o0

> V regular and decaying (say, Schwartz) and a(x) " — {4+
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Introduction

Quadratic Klein-Gordon (w/ Pierre Germain)

Consider the equation

Ou+ (=02 414 V(x))u=a(x)u” + - (KG)

> V regular and decaying (say, Schwartz) and a(x) “2EC 0,

> Spectral assumptions:

Hy := —8?+ V  has no bound states

and, for all t e R
u(0,t) =0

(will explain this)

F. Pusateri




Introduction [ Results in 1d

Consider initial data (u(0, x), ut(0, x)) = (uo(x), u1(x)) with

[({@x)uo, un) | o + [l () () o, tn)l] o = € < 1.

Then:
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Consider initial data (u(0, x), ut(0, x)) = (uo(x), u1(x)) with
[[({0x) ti0, ur) | o + [[{x) () o, tn)]] o = & < 1.
Then:
> (Global bounds and decay) There exists a unique global solution s.t.

lu(®) s S e, lu(t)lle S eft)™2

~ ~
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Introduction c Results in 1d

Consider initial data (u(0, x), ut(0, x)) = (uo(x), u1(x)) with

[({@x)uo, un) | o + [l () () o, tn)l] o = € < 1.

Then:

> (Global bounds and decay) There exists a unique global solution s.t.

lu(®) s S e, lu(t)lle S eft)™2

> (Asymptotic behavior) There exists W € L* s.t.

76,0 = Wik e (el W) Prog )| =50

where f(t, k) =~ %) (9, + i(k))u(t, k).

Similar as t — —o0, up to conjugating by the scattering matrix of V.
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Results in 1d

Comments

> QZu+ (—02+ 1+ V)u=a(x)u>+--- s a true quadratic model-
No localization of the nonlinearity; e.g. a ~ 1 or a ~ sign(x) as |x| — oo

No transformation to cubic nonlinearity (Yes if V =0, a =1)
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Comments

> QZu+ (—02+ 1+ V)u=a(x)u>+--- s a true quadratic model-
No localization of the nonlinearity; e.g. a ~ 1 or a ~ sign(x) as |x| — oo

No transformation to cubic nonlinearity (Yes if V =0, a =1)

» About the ?(0) = 0 assumption: let f; be the zero energy 'eigenfunction’

solution to Hyfy =0, f, X7 1.

V generic, that is,

/V(X)ﬁr(x)dx;éO, (e T(0)=0) — u0)=0.

» If V is non-generic: to ensure 1(0) = 0 assume structure on equation:

for example, V, a and ug are s.t. u is odd/even for fi even/odd.
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Results in 1d

Comments

> QZu+ (—02+ 1+ V)u=a(x)u>+--- s a true quadratic model-
No localization of the nonlinearity; e.g. a ~ 1 or a ~ sign(x) as |x| — oo

No transformation to cubic nonlinearity (Yes if V =0, a =1)

» About the ?(0) = 0 assumption: let f; be the zero energy 'eigenfunction’

solution to Hyfy =0, f, X7 1.

V generic, that is,
/V(X)ﬁr(x)dx;éO, (e T(0)=0) — u0)=0.

» If V is non-generic: to ensure 1(0) = 0 assume structure on equation:

for example, V, a and ug are s.t. u is odd/even for fi even/odd.

> Generic and symmetric cases are easier than the general case.
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Results in 1d

Application 1: “Continuous subsystem” of ¢*

Recall linearization around the kink ¢o of the ¢* equation:
v+ (- Do +2+ V(x))v = —3¢pov? — v
» V =3(¢% — 1) has discrete spectrum: translation mode, an even resonance,
and internal mode:

Hyd = —1d.
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» V =3(¢% — 1) has discrete spectrum: translation mode, an even resonance,
and internal mode:
Hyd = —1d.
Decompose (odd solution) v = a(t)d(x) + u(x,t), u= Pcu, then
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» V =3(¢% — 1) has discrete spectrum: translation mode, an even resonance,

and internal mode:
Hyd = —1d.

Decompose (odd solution) v = a(t)d(x) + u(x,t), u= Pcu, then

Ru+t (=02 42+ V(x))u= P3¢t — v +---)

» 1u(0) = 0 holds for odd data,
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Results in 1d

Application 1: “Continuous subsystem” of ¢*

Recall linearization around the kink ¢o of the ¢* equation:

v+ (—854—2—}— V(X))v:—3q50v2—v3

» V =3(¢% — 1) has discrete spectrum: translation mode, an even resonance,

and internal mode:
Hyd = —1d.

Decompose (odd solution) v = a(t)d(x) + u(x,t), u= Pcu, then

8t2u—|—(—8f—|—2—|— V(x))u=Pc( —3¢ou2—u3)

» 1u(0) = 0 holds for odd data, our result applies to “continuous subsystem’.

F. Pusateri
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Applications 2
Consider the following equations:

Fv+ (= +1+Ve(x))v=N(v), Vi:i=—L(l+1)cosh™*(x) (KG)
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Results in 1d

Applications 2

Consider the following equations:

Fv+ (= +1+Ve(x))v=N(v), Vi:i=—L(l+1)cosh™*(x) (KG)

» ¢ =1 comes from Sine-Gordon equation
Dt — Pxx = sSin, ¢o(x) = arctan(e”).

It is known that ¢o is not asymptotically stable (b/c wobbling kink).
Our result shows: if N(v) is even = 0 is asymptotically stable.
> ¢ =2 comes from the ¢* equation.

» ¢ = 3 comes from quadratic NLKG
b — o +d=¢",  Q(x)=3cosh™?(%).

Our result gives: asymptotic stability for even solutions of the associated
“continuous subsystem” uy + (—0x + 1+ V3)u = v, u=P.u.

F. Pusateri




Results in 1d

Results for flat (V = 0) Klein-Gordon
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Results for flat (V = 0) Klein-Gordon

» Delort (‘01) quasilinear (homogeneous) case.
Lindblad-Soffer ('05), Hayashi-Naumkin (‘12) semilinear case.

» Works on simplified models:

O2u+ (=02 4+ 1)u = a(x)u® + b(x)u? (KGo)

> Lindblad-Soffer ('15), Sterbenz (‘15): a =1, b = 1+decaying.
» Lindblad-Soffer-Luhrman (‘20): a decaying and

(1) b=0 or (2) 3(+v3)=0 and b= 1l+decaying.

» Byproduct of our theorem: any a and b under odd symmetry.

F. Pusateri




Results in 1d

Results on Kinks

> Martel-Munoz-Kowalczyk (‘15): asymptotic stability locally in energy
space for odd perturbations of the ¢* kink.
MMK (‘16): local asymptotic stability for (odd) global solutions of
general wave equations.
MMK (‘19): local asymptotic stability for global solutions near unstable
solitons of NLKG.
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Results in 1d

Results on Kinks

> Martel-Munoz-Kowalczyk (‘15): asymptotic stability locally in energy
space for odd perturbations of the ¢* kink.

MMK (‘16): local asymptotic stability for (odd) global solutions of
general wave equations.

MMK (‘19): local asymptotic stability for global solutions near unstable
solitons of NLKG.

» Komech-Kopylova (‘11-13): Full asymptotic stability for a class of kinks
for relativistic GL equations.

» Delort-Masmoudi (‘20): Linear pointwise decay for odd perturbations of
the ¢* kink for times |t| < e7*.

» Donninger-Krieger (‘16): 07u — 0ju+ V(x)u =0,V ~ —1|x| 2,
using distorted Fourier Transform & Vectorfields.

Donninger-Krieger-Szeftel-Wong ('16): Stability of the catenoid for
vanishing mean-curvature flow in Minkowski space.
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Results for 1d NLS with potential

Bt + (=0 + V(x))u = +|u)’u

» Case V = 0: Deift-Zhou (‘90s), Hayashi-Naumkin (‘97), Lindblad-Soffer
(06), Kato-P. (‘11), Ifrim-Tataru (‘15) ...

F. Pusateri




Results in 1d

Results for 1d NLS with potential

Bt + (=0 + V(x))u = +|u)’u

» Case V = 0: Deift-Zhou (‘90s), Hayashi-Naumkin (‘97), Lindblad-Soffer
(06), Kato-P. (‘11), Ifrim-Tataru (‘15) ...

» Case V # 0, no bound states:
» Cuccagna-Georgiev-Visciglia (‘12): |u[P~u, with p > 3

v

Naumkin ('16): p = 3, generic V

v

Delort (‘16): p =3, V even, u odd (also exceptional)
Germain-P.-Rousset (‘17): Generic V
Masaki-Murphi-Segata (‘17): ¢ potential

v

v
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Results for 1d NLS with potential

Bt + (=0 + V(x))u = +|u)’u

» Case V = 0: Deift-Zhou (‘90s), Hayashi-Naumkin (‘97), Lindblad-Soffer
('06), Kato-P. (‘11), Ifrim-Tataru (‘15) ...
» Case V # 0, no bound states:
» Cuccagna-Georgiev-Visciglia (‘12): |u[P~u, with p > 3
» Naumkin (‘16): p = 3, generic V
> Delort (‘16): p =3, V even, u odd (also exceptional)
» Germain-P.-Rousset ('17): Generic V
> Masaki-Murphi-Segata (‘17): ¢ potential

> Gong-P. (‘19): Generic and non-generic w/ vanishing at zero frequency
Only require weighted L'-potential (e.g. barrier)

Simplified proof: using basic PDO bounds, structure of Jost functions,
approximate commutation identity.
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Start looking at linear decay and relation to “weighted norms”:
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Ideas of the proof

Start looking at linear decay and relation to “weighted norms”:

» Can show the linear decay estimates

L=+—-0x+V+m?

Ie

i 1
) S TnfnLi,
’th”Loo ~ \/7 |f||L°°

e Iakfllm (D)

|t|3/4|

F. Pusateri




Ideas of proof
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Start looking at linear decay and relation to “weighted norms”:

» Can show the linear decay estimates
L=+v-0x+V+m?

||a/<f||L27 (D)

Ie

; 1
e S Tnfuq,
Ith”Loo ~ f|lf||Lw

» Have analogues in higher dimensions.

||e |t|3/4

More general dispersive estimates for Schrodinger operators:
Journé-Soffer-Sogge ('90), Goldberg-Schlag, Erdogan-Schlag (‘00s),
Krieger-Schlag (‘06) ...
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Ideas of the proof

Start looking at linear decay and relation to “weighted norms”:

» Can show the linear decay estimates

L=+—-0x+V+m?

Ie

; 1
e S Tnfuq,
Ith”Loo ~ f|lf||Lw

» Have analogues in higher dimensions.

e ||akf||L27 (D)

|t|3/4

More general dispersive estimates for Schrodinger operators:
Journé-Soffer-Sogge ('90), Goldberg-Schlag, Erdogan-Schlag (‘00s),
Krieger-Schlag (‘06) ...

> Most of the 1d theory revolves around controlling the norms in (D). Note

Ix fll 2 2 110 | -
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Ideas of proof

dFT in d =1 and strategy

> Let fi(x, k) be Jost functions:

(-2 + V) = Ky,  fi(x, k)~ e™™ as x — too.
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> Let fi(x, k) be Jost functions:
(-2 + V) = Ky,  fi(x, k)~ e™™ as x — too.

» Denote T(k) (transmission) and R4 (k) (reflection) coefficients s. t.

T(K)fi(x, k) = ™ + R_(k)e™™, as x — —oo0,
T(K)f_(x, k) = e ™ + R (k)e™, as x — .
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dFT in d =1 and strategy

> Let fi(x, k) be Jost functions:

(-2 + V) = Ky,  fi(x, k)~ e™™ as x — too.

» Denote T(k) (transmission) and R4 (k) (reflection) coefficients s. t.
T(K)fi(x, k) = ™ + R_(k)e™™, as x — —oo0,
T(K)f_(x, k) = e ™ + R (k)e™, as x — .

» Defining

o T(k)f:(x, k) for k >0
Wl k) = { T(—kJ)rf,(x, —k) for k <0,

the distorted Fourier transform is

F(6)(K) = d(k) = / W R dx,  F(x) = / (. K)3(k) dk.
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» First, decompose each 1 as

V(x, k)~ e 4 eFO((x)7P), as x — £oo
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Decompositions of ¢ and p

» First, decompose each 1 as

V(x, k)~ e 4 eFO((x)7P), as x — £oo

» Accordingly, decompose the NSD
) = [ DOx R (x 0 m) e = s + e
where
ps(kem) ~ Go(p) + p.v%, p = Bk + 0+ 6m,

with 8,7, = £1, and pur(k, ¢, m) a ‘smooth’ function.
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Ideas of proof

Decompositions of ¢ and p
» First, decompose each 1 as
V(x, k)~ e 4 eFO((x)7P), as x — £oo
» Accordingly, decompose the NSD
) = [ DOx R (x 0 m) e = s + e
where
us(k,,m) = do(p) -+ p.v%, p:=Bk+~L+5m,
with 8,7, = £1, and pur(k, ¢, m) a ‘smooth’ function.

> Let us concentrate on the p.v. contribution.
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Ideas of proof

> Set  f(t,k) = e"RV(t, k),  V=(8— (k)i

» The contribution from p.v. to Duhamel’s formula is

1
k—/0+m

t
z/ // Pk tp) F(é)?(k —{—p) p.v.% dédpds,
0
where S(k,l,p) = —(k) £ (£) + (k — £ — p).
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> Set  f(t,k) = e"RV(t, k),  V=(8— (k)i

» The contribution from p.v. to Duhamel’s formula is

1
k—¢+m
t . - - 1
z/ // = LRV E(NVF(k — € — p) p.v.; d¢dpds,
0
where S(k,l,p) = —(k) £ (£) + (k — £ — p).

» For |p| < 1, the p.v. is singular, but ® is close to the “flat” one,
hence lower bounded (uniformly, for bounded k and ¢)

|®(k, £, p)| Z [®(k, £,0)] + O(p) 2 1

—  Can do normal form/time-averaging to obtain cubic terms
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> Set  f(t,k) = e"RV(t, k),  V=(8— (k)i

v

The contribution from p.v. to Duhamel’s formula is

1
k—¢+m

t . ~ ~
z/ // = LRV E(NVF(k — € — p) p.v.% d¢dpds,
0
where S(k,l,p) = —(k) £ (£) + (k — £ — p).

v

For |p| < 1, the p.v. is singular, but ® is close to the “flat” one,
hence lower bounded (uniformly, for bounded k and ¢)

|®(k, £, p)| Z [®(k, £,0)] + O(p) 2 1

—  Can do normal form/time-averaging to obtain cubic terms

>

F. Pusateri

For |p| 2 1, the p.v. is smooth, but frequencies in ® are “uncorrelated” ...




Ideas of proof

> For |p| 2 1 nonlinear terms look like

t . ~ ~
N(t, k) %/ // =L E(0)F(m) x(k, £, m) dédm ds,
0
where  ®(k,¢,m):= —(k) £ (¢) £ (m) and x is smooth.
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> For |p| 2 1 nonlinear terms look like

t . ~ ~
N(t, k) ~ / / / =L E(0)F(m) x(k, £, m) dédm ds,
0
where  ®(k,¢,m):= —(k) £ (¢) £ (m) and x is smooth.

» Using f(0) =0, and [|kfl| > = (t)°, § > 0 can calculate

t .
N(t, k) z/ e S(0=2) // (1?s°) (jm[*/*s°)dedm ds

0 [£]24|m[2<s—1
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Ideas of proof

> For |p| 2 1 nonlinear terms look like

t . ~ ~
N(t, k) ~ / / / =L E(0)F(m) x(k, £, m) dédm ds,
0
where  ®(k,¢,m):= —(k) £ (¢) £ (m) and x is smooth.

» Using f(0) =0, and [|kfl| > = (t)°, § > 0 can calculate

t .
N(t, k) z/ e S(0=2) // (1?s°) (jm[*/*s°)dedm ds

0 [€]12+|m|2<s—1
For r:= (k) — 2| =~ ||£] — V3| get:

N(t, k) %/ eisr573/2+25 ds ~ rl/2725
sl

F. Pusateri
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» In particular,

OCN(t, k)l 2 me-1y 2 ¢ ... worse than initial assumption
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» In particular,

OCN(t, k)l 2 me-1y 2 ¢ ... worse than initial assumption

» This degeneracy around || = /3
> Dictates the functional framework.
> First time such a degeneracy is treated in 1d.
In 2d: Deng-lonescu-Pausader (EM) and DIPP (gravity-capillary WW).

> It is the generic situation to expect in 1d problems.
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Ideas of proof

» In particular,

OCN(t, k)l 2 me-1y 2 ¢ ... worse than initial assumption

» This degeneracy around || = /3
> Dictates the functional framework.
> First time such a degeneracy is treated in 1d.
In 2d: Deng-lonescu-Pausader (EM) and DIPP (gravity-capillary WW).

> It is the generic situation to expect in 1d problems.

» To estimate Ok N:

Dyadically decompose according to the size of frequencies,
the distance from 0 and 4+/3, the size of ® = —(k) + (£) + (m) ...

Integration by parts, time averaging/normal forms, multilinear estimates. ..

F. Pusateri
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Case d =3

Theorem (P.-Soffer ‘20)
Consider
O+ (—A+ V)u =1’ (NLS)

for regular and decaying V' and small initial data uo € H" N L*((x)*)
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of the previous models. ..
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Consider

0w+ (A + V)u=u’ (NLS)
for regular and decaying V' and small initial data uo € H" N L*((x)*)

Assume —A + V has no bound states.
Then, there exists a unique global solution to (NLS) such that

lu(®)ll e S (8)77°

> (NLS) is the natural simplest generalization to higher dimension
of the previous models. ..

> (NLS) is at the Strauss exponent.
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Introduction C Results in 1d

Case d =3

Theorem (P.-Soffer ‘20)

Consider
O+ (—A+ V)u =1’ (NLS)

for regular and decaying V' and small initial data uo € H" N L*((x)*)
Assume —A + V has no bound states.
Then, there exists a unique global solution to (NLS) such that

lu(®)ll e S (8)77°

> (NLS) is the natural simplest generalization to higher dimension
of the previous models. ..

> (NLS) is at the Strauss exponent.
» Klein-Gordon would work as well. Bound states and radiation damping?
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Related works and comments

> Some related works:
> Soffer-Weinstein (‘99), Tsai-Yau (‘02) ...: cubic NLS/KG radiation damping.
> Cuccagna, Bambusi-Cuccagna (‘11): Small Energy Scattering NLS/KG
> Gustafson-Nakanishi-Tsai (‘04): cubic NLS stability of small solitary waves
> V = 0: Hayashi-Naumkin (‘00), Germain-Masmoudi-Shatah (‘10)
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Related works and comments

> Some related works:
> Soffer-Weinstein (‘99), Tsai-Yau (‘02) ...: cubic NLS/KG radiation damping.
> Cuccagna, Bambusi-Cuccagna (‘11): Small Energy Scattering NLS/KG
> Gustafson-Nakanishi-Tsai (‘04): cubic NLS stability of small solitary waves
> V = 0: Hayashi-Naumkin (‘00), Germain-Masmoudi-Shatah (‘10)

» Germain-Hani-Walsh (‘13): V # 0, nonlinearity @ (~ cubic-type)
Léger (‘17): (NLS) with V small

v

> In our result
> V is large and cannot be treated perturbatively;

> For u?, even with V = 0, there are fully resonant interactions (at the origin).
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Multilinear structure in 3d
> For x € R®, generalized eigenfunctions solve
) 1 ellklx=yl
k) = 'X'k—f/ =V L k)d
U(x, k) =e i | =y (N¥(y, k) dy
_ ik _ ilklix 1 K
e e ~ P1(x, k).

Deduce estimate on (V, V) derivatives.
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> For x € R®, generalized eigenfunctions solve
) 1 ellklx=yl
k) = 'X'k—f/ =V L k)d
U(x, k) =e i | =y (N¥(y, k) dy

_ ik _ ilklix 1 K
e e Xz/)l(x, ).

Deduce estimate on (V, V) derivatives.

» Expand

Uil k) =D _gi(w, k) r? + ROx k), go(w, k) = / V)l k)dy

j=0
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Multilinear structure in 3d

> For x € R®, generalized eigenfunctions solve

e 1 [ el
P(x, k) =" — o /R3 WV(YW(% k)dy

_ ik _ ilklix 1 K
e e Xz/)l(x, ).

Deduce estimate on (V, V) derivatives.

» Expand

Uil k) =D _gi(w, k) r? + ROx k), go(w, k) = / V)l k)dy

j=0

» Leading order contribution
lhstsm) = | TR 0, m) de
R

1 x-(—
~ (5(/( —é— m) + 8 mel|"7H><|el)<'( k+[)g0(w’ m) dX
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» Study the behavior of

1 p ilqlixl a(p, q) 1
v(p, q :/ —e™Pe go(w, p) dx ~ p.v. + e
P9 = | N Py = P o = gl

—  manifestation of the uncertainty caused by the potential.
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» Bounds for non-standard bilinear operators with kernel v
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» Study the behavior of

1 p ilqlixl a(p, q) 1
v(p, q :/ —e™Pe go(w, p) dx ~ p.v. + e
P9 = | N Py = P o = gl

—  manifestation of the uncertainty caused by the potential.
» Bounds for non-standard bilinear operators with kernel v

> In Duhamel’s formula get

[ [[ e memmt s s, m 2=ty
0 =

1
dldmds
€ — k| — [m]
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Study the behavior of

v

1 p ilqlixl a(p, q) 1
v(p, q :/ —e™Pe go(w, p) dx ~ p.v. + e
(P9 = | T (0 P) e 2 P g

—  manifestation of the uncertainty caused by the potential.

v

Bounds for non-standard bilinear operators with kernel v

v

In Duhamel's formula get

t
is(— kP +EPHmP) F o \VF a(l — k,m) 1
e f(s,£)f(s,m p-v. dédmds
/// (&0t m) = PV T/ = [

> Want estimates for this time evolution:
> Fewer (time) oscillations than V = 0 case (uncorrelated frequencies)

> Singular kernel — fewer directions for integration by parts
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Study the behavior of

v

1 p ilqlixl a(p, q) 1
v(p, q :/ —e™Pe go(w, p) dx ~ p.v. + e
(P9 = | T (0 P) e 2 P g

—  manifestation of the uncertainty caused by the potential.

v

Bounds for non-standard bilinear operators with kernel v

v

In Duhamel's formula get

t
is(— kP +EPHmP) F o \VF a(l — k,m) 1
e f(s,£)f(s,m p-v. dédmds
/// (&0t m) = PV T/ = [

> Want estimates for this time evolution:
> Fewer (time) oscillations than V = 0 case (uncorrelated frequencies)
> Singular kernel — fewer directions for integration by parts

> Using “good directions” (and time averaging) turns out to be enough
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Thank You for your attention!
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