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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Some models

We are going to consider nonlinear dispersive PDEs with potentials such as

I Cubic nonlinear Schrödinger (NLS)

i∂tu − ∂2
xu + V (x)u = |u|2u, x ∈ R

I Quadratic Klein-Gordon (KG)

∂2
t u + (−∂2

x + m2 + V (x))u = u2, x ∈ R

I Quadratic NLS

i∂tu −∆u + V (x)u = u2, x ∈ R3

These are just some examples (for which we have results)
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Main features of these problems:

I Low dimensions and low power nonlinearity.

I V = V (x) is a real potential, sufficiently regular, decaying.

(We will impose some spectral assumptions on V )

I Interested in Cauchy problem for small initial data.

Global behavior of solutions, and scattering/asymptotics as t → ±∞.

I Main motivation is the full asymptotic stability of special solutions

of nonlinear evolution equations, such as solitons, kinks. . .

where models above appear when linearizing around these solutions.
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Motivation and Examples

1. Kink for the φ4 model

∂2
t φ− ∂2

xφ = φ− φ3, φ0(x) = tanh
( x√

2

)
(1)

2. Traveling Kinks for defocusing mKdV

∂tu + ∂3
xu = −∂x

(
u3), φc,x0 (x + ct) =

√
cφ0

(√
c(x + x0 + ct)

)
3. Vortices for (reduced) 2d Ginzburg-Landau model, with energy

E(φ) =

∫ ∞
0

[(∂φ
∂t

)
+
(∂φ
∂ρ

)2

+
N2

ρ2
φ2 +

1

4
(1− φ2)2

]
ρ dρ,

φ(ρ) ≈ 1− N

2ρ2
+ O

(
ρ−4), ρ→∞.
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

I In ∂2
t φ− ∂2

xφ = φ− φ3 let φ = φ0 + v , small v :

∂2
t v − ∂2

xv = v − 3φ2
0v − 3φ0v 2 − v 3

; ∂2
t v +

(
− ∂2

x + 2 + V (x)
)
v = −3φ0v 2 − v 3, (2)

with V = −3 cosh−2(x/
√

2).

−→ 1d Klein-Gordon with a Potential and Quadratic Nonlinearity.

I The question of asymptotic stability for φ0 becomes that of

small data global-in-time decay and scattering for v in (2).

I Ideal result for these types of equations:

φ = M(φ0) + D(t, x) + R(t, x)

M(φ0) = modulated version of φ0

D(t, x) = is a discrete component (w/ vanishing amplitude)

R(t, x) = is a dispersing radiation component
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Other notions of stability

In the example above one has the conserved energy

E(t) =

∫
R

(∂tφ)2 + (∂xφ)2 +
1

2
(1− |φ|2)2 dx .

Look at φ = φ0 + v1, ∂tφ = v2, v = (v1, v2), ‖v(0)‖H1×L2 ≤ ε

I Orbital Stability (in the Energy space):

sup
t∈R

inf
x0∈R

∥∥φ(t, ·+ x0)− φ0

∥∥
H1(R)

≤ ε.

Due to Henry-Perez-Wreszinski (‘82).

I Local Asymptotic Stability (in the Energy space): for any bounded interval I

lim
t→±∞

‖v(t)‖H1×L2(I ) = 0.

Due to Martel-Munoz-Kowalczyk (‘15).
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

General difficulties and methods

I Note that, for quasilinear equations, e.g., Euler (vortices), water waves
(traveling / solitary waves) . . . the above notions are likely not relevant,
and only full asymptotic stability is.

I Loosely speaking, the global-in-time theory for dispersive/wave
equations relies on the use of dispersive properties to control
nonlinear interactions.

I Low power and/or dimension −→ Slow decay

−→ cannot rely on “linear” theory, (e.g. Lp decay, local decay, Strichartz)

−→ expect nonlinear structures to play key role,
and nonlinear asymptotic phenomena

I In the free/flat V = 0 case, can try to use “classical” methods, e.g.,
vectorfields, normal forms theory, multilinear estimates . . .

F. Pusateri
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I Several issues in the perturbed/distorted V 6= 0 case:

I Lack of invariance (and commuting vectorfields)

I No conservation of momentum → no standard Fourier analysis

I More nonlinear and coherent/resonant interactions . . .

I Want to use the distorted Fourier transform (FT adapted to the
Schrödinger operator H = −∆ + V ) and develop multilinear harmonic
analysis in distorted frequency space.

I Fourier-based techniques have been successful in the V = 0 case

(see for example Germain-Masmoudi-Shatah, Gustafson-Nakanishi-Tsai,
Ionescu-Pausader, Ionescu-P. . . . )

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Distorted Fourier Transform (dFT)

I Look at solutions ψ of

−∆ψ + V (x)ψ = µψ.

I For µ = |k|2 have bounded solutions ψ(x , k) ≈ e ix·k as |x | → ∞
I Can also have eigenfunctions ϕj(x) corresponding to negative

eigenvalues µ1, . . . , µN < 0

I The distorted Fourier transform is given by

F̃(f )(k) := f̃ (k) := cd

∫
Rd

ψ(x , k)f (x) dx , f̃j :=

∫
Rd

ϕj(x)f (x) dx

f (x) =

∫
Rd

ψ(x , k)f̃ (k) dk +
∑
j

f̃jϕj(x)

(Weyl-Kodaira-Titchmarsh (theory), Ikebe, Alsholm-Schmidt,
Agmon (SR potentials) . . . )

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

I In our models we will assume V smooth, decaying, no discrete spectrum.

I DFT diagonalizes HV := −∆ + V on the continuous spectrum

−∆ + V = F̃−1|k|2F̃ .

I Wave operators are

W+ = s − lim
t→∞

e it(−∆+V )e it∆ = F̃−1F̂ .

HV and H0 are unitary equivalent through wave operators

I Spectral Theory and Wave operators:

d = 1: Deift-Trubowitz (‘80s), Weder (∼ ‘00) . . .

d ≥ 2: Agmon, Kato, Kuroda (≤ ‘80s), Yajima (‘90s), Weder (‘03),
Beceanu-Schlag (‘10s) . . .

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Distorted Duhamel’s formula

Consider

i∂tu −∆u + V (x)u = u2

I Define the profile in Fourier f = e−it(−∆+V )u, i.e., f̃ (t, k) = e−it|k|2 ũ(t, k)

i∂t f̃ (t, k) = e−it|k|2 F̃
(
u2)

=

∫∫
e it(−|k|2+|`|2+|m|2) f̃ (t, `)f̃ (t,m)µ(k, `,m) d`dm,

µ(k, `,m) :=

∫
ψ(x , k)ψ(x , `)ψ(x ,m) dx .

I We call µ the “nonlinear spectral distribution” (NSD).

I In the free case µ(k, `,m) := δ(k − `−m).

For V 6= 0 do not have “conservation of momentum” k − `−m = 0.

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

NSD and oscillations

f̃ (T , k)− f̃ (t, 0)

= −i

∫ T

0

∫∫
e it(−|k|2+|`|2+|m|2) f̃ (t, `)f̃ (t,m)µ(k, `,m)d`dm dt

I Understand solution

⇐⇒ control the (time-frequency) integral

⇐⇒ exploit oscillations . . .

I Need to analyze the structure and singularities of µ.

Will see a significant difference in d = 1 vs d > 1.

I Want to develop all necessary harmonic analysis tools.

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Quadratic Klein-Gordon (w/ Pierre Germain)

Theorem

Consider the equation

∂2
t u + (−∂2

x + 1 + V (x))u = a(x)u2 + · · · (KG)

I V regular and decaying (say, Schwartz) and a(x)
x→±∞−→ `±

I Spectral assumptions:

HV := −∂2
x + V has no bound states

and, for all t ∈ R

ũ(0, t) = 0

(will explain this)

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Theorem

Consider initial data (u(0, x), ut(0, x)) = (u0(x), u1(x)) with

‖(〈∂x〉u0, u1)‖H4 + ‖〈x〉(〈∂x〉u0, u1)‖H2 = ε� 1.

Then:

I (Global bounds and decay) There exists a unique global solution s.t.

‖u(t)‖H5 . ε〈t〉Cε, ‖u(t)‖L∞ . ε〈t〉−1/2.

I (Asymptotic behavior) There exists W ∈ L∞ s.t.∥∥∥f̃ (t, k)−W (k) exp
(
ic|W (k)|2 log t

)∥∥∥
L∞
k

t→∞−→ 0

where f̃ (t, k) ≈ e it〈k〉(∂t + i〈k〉)ũ(t, k).

Similar as t → −∞, up to conjugating by the scattering matrix of V .

F. Pusateri
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Similar as t → −∞, up to conjugating by the scattering matrix of V .

F. Pusateri

13



Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Theorem

Consider initial data (u(0, x), ut(0, x)) = (u0(x), u1(x)) with

‖(〈∂x〉u0, u1)‖H4 + ‖〈x〉(〈∂x〉u0, u1)‖H2 = ε� 1.

Then:

I (Global bounds and decay) There exists a unique global solution s.t.

‖u(t)‖H5 . ε〈t〉Cε, ‖u(t)‖L∞ . ε〈t〉−1/2.

I (Asymptotic behavior) There exists W ∈ L∞ s.t.∥∥∥f̃ (t, k)−W (k) exp
(
ic|W (k)|2 log t

)∥∥∥
L∞
k

t→∞−→ 0

where f̃ (t, k) ≈ e it〈k〉(∂t + i〈k〉)ũ(t, k).
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Comments

I ∂2
t u + (−∂2

x + 1 + V )u = a(x)u2 + · · · is a true quadratic model:

No localization of the nonlinearity; e.g. a ∼ 1 or a ∼ sign(x) as |x | → ∞

No transformation to cubic nonlinearity (Yes if V = 0, a = 1)

I About the f̃ (0) = 0 assumption: let f+ be the zero energy ‘eigenfunction’

solution to HV f+ = 0, f+
x→∞∼ 1.

V generic, that is,∫
V (x)f+(x) dx 6= 0, (⇐⇒ T (0) = 0) =⇒ ũ(0) = 0.

I If V is non-generic: to ensure ũ(0) = 0 assume structure on equation:

for example, V , a and u0 are s.t. u is odd/even for f+ even/odd.

I Generic and symmetric cases are easier than the general case.

F. Pusateri
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I If V is non-generic: to ensure ũ(0) = 0 assume structure on equation:

for example, V , a and u0 are s.t. u is odd/even for f+ even/odd.

I Generic and symmetric cases are easier than the general case.

F. Pusateri

14



Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Comments

I ∂2
t u + (−∂2

x + 1 + V )u = a(x)u2 + · · · is a true quadratic model:

No localization of the nonlinearity; e.g. a ∼ 1 or a ∼ sign(x) as |x | → ∞

No transformation to cubic nonlinearity (Yes if V = 0, a = 1)

I About the f̃ (0) = 0 assumption: let f+ be the zero energy ‘eigenfunction’

solution to HV f+ = 0, f+
x→∞∼ 1.

V generic, that is,∫
V (x)f+(x) dx 6= 0, (⇐⇒ T (0) = 0) =⇒ ũ(0) = 0.
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Application 1: “Continuous subsystem” of φ4

Recall linearization around the kink φ0 of the φ4 equation:

∂2
t v +

(
− ∂2

x + 2 + V (x)
)
v = −3φ0v 2 − v 3

I V = 3(φ2
0 − 1) has discrete spectrum: translation mode, an even resonance,

and internal mode:

HV d = − 1
2
d .

Decompose (odd solution) v = a(t)d(x) + u(x , t), u = Pcu, then

∂2
t u +

(
− ∂2

x + 2 + V (x)
)
u = Pc

(
− 3φ0u2 − u3 + · · ·

)
I ũ(0) = 0 holds for odd data, our result applies to “continuous subsystem”.

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Applications 2

Consider the following equations:

∂2
t v +

(
− ∂2

x + 1 + V`(x)
)
v = N(v), V` := −`(`+ 1) cosh−2(x) (KG`)

I ` = 1 comes from Sine-Gordon equation

φtt − φxx = sinφ, φ0(x) = arctan(ex).

It is known that φ0 is not asymptotically stable (b/c wobbling kink).

Our result shows: if N(v) is even =⇒ 0 is asymptotically stable.

I ` = 2 comes from the φ4 equation.

I ` = 3 comes from quadratic NLKG

φtt − φxx + φ = φ2, Q(x) = 3
2

cosh−2 ( x
2

)
.

Our result gives: asymptotic stability for even solutions of the associated
“continuous subsystem” utt + (−∂xx + 1 + V3)u = u2, u = Pcu.

F. Pusateri
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

Results for flat (V = 0) Klein-Gordon

I Delort (‘01) quasilinear (homogeneous) case.

Lindblad-Soffer (‘05), Hayashi-Naumkin (‘12) semilinear case.

I Works on simplified models:

∂2
t u + (−∂2

x + 1)u = a(x)u2 + b(x)u3 (KG0)

I Lindblad-Soffer (‘15), Sterbenz (‘15): a ≡ 1, b = 1+decaying.

I Lindblad-Soffer-Luhrman (‘20): a decaying and

(1) b ≡ 0 or (2) â(±
√

3) = 0 and b = 1+decaying.

I Byproduct of our theorem: any a and b under odd symmetry.

F. Pusateri
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3) = 0 and b = 1+decaying.

I Byproduct of our theorem: any a and b under odd symmetry.
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Results on Kinks

I Martel-Munoz-Kowalczyk (‘15): asymptotic stability locally in energy
space for odd perturbations of the φ4 kink.

MMK (‘16): local asymptotic stability for (odd) global solutions of
general wave equations.

MMK (‘19): local asymptotic stability for global solutions near unstable
solitons of NLKG.

I Komech-Kopylova (‘11-‘13): Full asymptotic stability for a class of kinks
for relativistic GL equations.

I Delort-Masmoudi (‘20): Linear pointwise decay for odd perturbations of
the φ4 kink for times |t| . ε−4.

I Donninger-Krieger (‘16): ∂2
t u − ∂2

xu + V (x)u = 0,V ≈ − 1
4
|x |−2,

using distorted Fourier Transform & Vectorfields.

Donninger-Krieger-Szeftel-Wong (‘16): Stability of the catenoid for
vanishing mean-curvature flow in Minkowski space.
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Results for 1d NLS with potential

i∂tu + (−∂xx + V (x))u = ±|u|2u

I Case V = 0: Deift-Zhou (‘90s), Hayashi-Naumkin (‘97), Lindblad-Soffer
(‘06), Kato-P. (‘11), Ifrim-Tataru (‘15) . . .

I Case V 6= 0, no bound states:

I Cuccagna-Georgiev-Visciglia (‘12): |u|p−1u, with p > 3

I Naumkin (‘16): p = 3, generic V

I Delort (‘16): p = 3, V even, u odd (also exceptional)

I Germain-P.-Rousset (‘17): Generic V

I Masaki-Murphi-Segata (‘17): δ potential

I Gong-P. (‘19): Generic and non-generic w/ vanishing at zero frequency

Only require weighted L1-potential (e.g. barrier)

Simplified proof: using basic PDO bounds, structure of Jost functions,
approximate commutation identity.
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Ideas of the proof

Start looking at linear decay and relation to “weighted norms”:

I Can show the linear decay estimates∥∥e itLf
∥∥
L∞x

.
1√
|t|
‖f ‖L1

x
, L =

√
−∂xx + V + m2

∥∥e itLf
∥∥
L∞x

.
1√
|t|
‖f̃ ‖L∞

ξ
+

1

|t|3/4
‖∂k f̃ ‖L2

ξ
, (D)

I Have analogues in higher dimensions.

More general dispersive estimates for Schrödinger operators:
Journé-Soffer-Sogge (‘90), Goldberg-Schlag, Erdogan-Schlag (‘00s),
Krieger-Schlag (‘06) . . .

I Most of the 1d theory revolves around controlling the norms in (D). Note

‖x f ‖L2 ≈ ‖∂k f̃ ‖L2 .
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Introduction dFT Results in 1d Ideas of proof NLS in d = 3

dFT in d = 1 and strategy

I Let f±(x , k) be Jost functions:

(−∂2
x + V )f± = k2f±, f±(x , k) ≈ e±ixk as x → ±∞.

I Denote T (k) (transmission) and R±(k) (reflection) coefficients s. t.

T (k)f+(x , k) ≈ e ikx + R−(k)e−ikx , as x → −∞,

T (k)f−(x , k) ≈ e−ikx + R+(k)e ikx , as x →∞.

I Defining

ψ(x , k) := 1√
2π

{
T (k)f+(x , k) for k ≥ 0
T (−k)f−(x ,−k) for k < 0,

the distorted Fourier transform is

F̃(φ)(k) = φ̃(k) =

∫
R
ψ(x , k)f (x) dx , f (x) =

∫
R
ψ(x , k)φ̃(k)dk.
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Decompositions of ψ and µ

I First, decompose each ψ as

ψ(x , k) ≈ e±ikx + e±ikxO(〈x〉−p), as x → ±∞

I Accordingly, decompose the NSD

µ(k, `,m) =

∫
ψ(x , k)ψ(x , `)ψ(x ,m) dx = µS + µR

where

µS(k, `,m) ≈ δ0(p) + p.v.
1

p
, p := βk + γ`+ δm,

with β, γ, δ = ±1, and µR(k, `,m) a ‘smooth’ function.

I Let us concentrate on the p.v. contribution.
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I Set f̃ (t, k) := e it〈k〉ṽ(t, k), ṽ = (∂t − i〈k〉)ũ.

I The contribution from p.v.
1

k − `+ m
to Duhamel’s formula is

≈
∫ t

0

∫∫
e isΦ(k,`,p) f̃ (`)f̃ (k − `− p) p.v.

1

p
d`dp ds,

where Φ(k, `, p) = −〈k〉 ± 〈`〉 ± 〈k − `− p〉.

I For |p| � 1, the p.v. is singular, but Φ is close to the “flat” one,
hence lower bounded (uniformly, for bounded k and `)

|Φ(k, `, p)| & |Φ(k, `, 0)|+ O(p) & 1

−→ Can do normal form/time-averaging to obtain cubic terms

I For |p| & 1, the p.v. is smooth, but frequencies in Φ are “uncorrelated” . . .
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I For |p| & 1 nonlinear terms look like

N(t, k) ≈
∫ t

0

∫∫
e isΦ(k,`,m) f̃ (`)f̃ (m)χ(k, `,m) d`dm ds,

where Φ(k, `,m) := −〈k〉 ± 〈`〉 ± 〈m〉 and χ is smooth.

I Using f̃ (0) = 0, and ‖∂k f̃ ‖L2 ≈ 〈t〉δ, δ > 0 can calculate

N(t, k) ≈
∫ t

0

e−is(〈k〉−2)

∫∫
|`|2+|m|2≤s−1

(
|`|1/2sδ

) (
|m|1/2sδ

)
d`dm ds

For r := |〈k〉 − 2| ≈ ||ξ| −
√

3| get:

N(t, k) ≈
∫
|s|≈r−1

e i s r s−3/2+2δ ds ≈ r 1/2−2δ
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I In particular,

‖∂kN(t, k)‖L2(r≈t−1) & |t|
2δ . . . worse than initial assumption

I This degeneracy around |ξ| =
√

3

I Dictates the functional framework.

I First time such a degeneracy is treated in 1d.

In 2d: Deng-Ionescu-Pausader (EM) and DIPP (gravity-capillary WW).

I It is the generic situation to expect in 1d problems.

I To estimate ∂kN:

Dyadically decompose according to the size of frequencies,
the distance from 0 and ±

√
3, the size of Φ = −〈k〉+ 〈`〉+ 〈m〉 . . .

Integration by parts, time averaging/normal forms, multilinear estimates. . .
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Case d = 3

Theorem (P.-Soffer ‘20)

Consider

i∂tu + (−∆ + V )u = u2 (NLS)

for regular and decaying V and small initial data u0 ∈ HN ∩ L2(〈x〉4)

Assume −∆ + V has no bound states.

Then, there exists a unique global solution to (NLS) such that

‖u(t)‖L∞ . 〈t〉−1−α.

I (NLS) is the natural simplest generalization to higher dimension
of the previous models. . .

I (NLS) is at the Strauss exponent.

I Klein-Gordon would work as well. Bound states and radiation damping?
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Related works and comments

I Some related works:

I Soffer-Weinstein (‘99), Tsai-Yau (‘02) . . . : cubic NLS/KG radiation damping.

I Cuccagna, Bambusi-Cuccagna (‘11): Small Energy Scattering NLS/KG

I Gustafson-Nakanishi-Tsai (‘04): cubic NLS stability of small solitary waves

I V = 0: Hayashi-Naumkin (‘00), Germain-Masmoudi-Shatah (‘10)

I Germain-Hani-Walsh (‘13): V 6= 0, nonlinearity u2 (∼ cubic-type)

I Léger (‘17): (NLS) with V small

I In our result

I V is large and cannot be treated perturbatively;

I For u2, even with V = 0, there are fully resonant interactions (at the origin).

F. Pusateri
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Multilinear structure in 3d

I For x ∈ R3, generalized eigenfunctions solve

ψ(x , k) = e ix·k − 1

4π

∫
R3

e i|k||x−y|

|x − y | V (y)ψ(y , k)dy

= e ix·k − e i|k||x| 1

|x |ψ1(x , k).

Deduce estimate on (∇k ,∇x) derivatives.

I Expand

ψ1(x , k) =
∑
j≥0

gj(ω, k) r−j + R(x , k), g0(ω, k) =

∫
R3

e i|k|ω·yV (y)ψ(y , k)dy

I Leading order contribution

µ(k, `,m) =

∫
R3

ψ(x , k)ψ(x , `)ψ(x ,m) dx

≈ δ(k − `−m) +

∫
R3

1

|x |e
i|m||x|e ix·(−k+`)g0(ω,m) dx

F. Pusateri
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I Study the behavior of

ν(p, q) =

∫
R3

1

|x |e
ix·pe i|q||x|g0(ω, p) dx ≈ a(p, q)

|p| p.v.
1

|p| − |q| + · · ·

−→ manifestation of the uncertainty caused by the potential.

I Bounds for non-standard bilinear operators with kernel ν

I In Duhamel’s formula get∫ t

0

∫∫
e is(−|k|2+|`|2+|m|2) f̃ (s, `)f̃ (s,m)

a(`− k,m)

|`− k| p.v.
1

|`− k| − |m| d`dm ds

I Want estimates for this time evolution:

I Fewer (time) oscillations than V = 0 case (uncorrelated frequencies)

I Singular kernel → fewer directions for integration by parts

I Using “good directions” (and time averaging) turns out to be enough

F. Pusateri
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Thank You for your attention!
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