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Introduction Boltzmann equation

The Boltzmann equation (1872)

• The Boltzmann equation

@tF + v ·rxF = Q(F ,F ), x 2 ⌦, v 2 R3, t � 0

• F = F (t , x , v): probability density in (position,velocity)
• ⌦ ⇢ R3: domain in space
• v ·rxF : free transport term
• Q(F ,F ): collision operator, local in (t , x), quadratic integral

operator
• Derived from rarefied gas dynamics: Maxwell 1860’, Boltzmann

1872.



Introduction Boltzmann equation

Physical conservation laws of energy and momentum
Given two particles, with velocities v , v⇤ 2 R3, after a binary collision
they have outgoing velocities v 0, v 0

⇤ 2 R3.
• These obey the conservation of momentum and energy:

v + v⇤ = v 0 + v 0
⇤,

|v |2 + |v⇤|2 = |v 0|2 + |v 0
⇤|2.

• Since there are six unknowns, (v 0, v 0
⇤), and four equations, the set

of solutions can be parametrized on the sphere � 2 S2:

v 0 =
v + v⇤

2
+

|v � v⇤|
2

�,

v 0
⇤ =

v + v⇤
2

� |v � v⇤|
2

�.

Upper bounds for the bilinear operator
Lower bounds for the linear operator

Other components of the proof

v

v⇤

v 0

v 0
⇤

Philip T. Gressman Global stability of the Boltzmann equation near equilibrium

• Describes the aftermath of a binary collision probabilistically.



Introduction Boltzmann equation

Boltzmann collision kernel: B(v � v⇤, �)

Q(F ,G)(v) =
R
R3 dv⇤

R
S2 d� B(v � v⇤,�) [F 0

⇤G0 � F⇤G] .

J. C. Maxwell in 1866 computed B(v � v⇤,�) from the potential:

�(r) = r�(p�1), p 2 (2,+1).

This kernel takes product form in its arguments as

B(v � v⇤,�) = |v � v⇤|� b(cos ✓), cos ✓ = v�v⇤
|v�v⇤| · �.

The angular singularity in � is not locally integrable:

sin ✓b(cos ✓) ⇡ ✓�1�2s, s = 1
p�1 2 (0, 1), 8 ✓ 2

�
0, ⇡2

⇤
.

• The kinetic factor |v � v⇤|� can be singular: � = p�5
p�1 > �3.

• In our results we assume � + 2s > �3
2 .

• Grad angular cutoff assumption



Introduction Landau Equation

Landau collision operator

�(r) = r�(p�1) (p > 2): p ! 2+ corresponds to the Coulomb
potential when � ! �3 and s ! 1. In the limit the Boltzmann operator
is no longer valid, replaced by the Landau collision operator (1936):

Q(g, h) = rv ·
⇢Z

R3
 (v � u) [g(u)rv h(v)� h(v)rug(u)] du

�

=
3X

j,m=1

@vj

Z

R3
 jm(v � u) [g(u)@vmh(v)� h(v)@umg(u)] du.

The non-negative matrix  is

 jm(v) =
1

8⇡

✓
�jm �

vjvm

|v |2

◆
|v |�+2, � � �3.

� = �3 is the physical Coulomb potential case.



Introduction Domains in space

Typical domains ⌦ in space

• The Torus x 2 T3 = [0, 2⇡]3 with periodic boundary conditions:
F (t , x , v) = F (t , x + 2⇡ei , v) for i = 1, 2, 3.

• The whole space x 2 R3 with suitable decay at infinity
F (t , x , v) ! 0 as |x | ! 1

• A domain ⌦ ⇢ R3 with general kinetic boundary conditions as
given in the next slides.



Introduction Domains in space

General boundary conditions for Kinetic equations

• The spatial domain ⌦ = {x : ⇣(x) < 0} is connected and bounded
with ⇣(x) being a smooth function. (We assume that r⇣(x) 6= 0 at
the boundary ⇣(x) = 0.)

• Define the outward normal vector n(x) on the boundary � = @⌦ as

n(x) def
=

r⇣(x)
|r⇣(x)| , x 2 @⌦.

• The phase boundary of ⌦⇥ R3 is � def
= @⌦⇥ R3.

• Split the boundary into the outgoing boundary �+, incoming
boundary ��, and singular boundary �0 for grazing velocities:

outgoing boundary: �+
def
= {(x , v) 2 ⌦⇥ R3 : n(x) · v > 0},

incoming boundary: ��
def
= {(x , v) 2 ⌦⇥ R3 : n(x) · v < 0},

singular boundary: �0
def
= {(x , v) 2 ⌦⇥ R3 : n(x) · v = 0}.



Introduction Kinetic Equation Boundary Conditions

General boundary conditions for Kinetic equations

For either the Boltzmann or Landau equations (a.k.a. the Kinetic
equations) we have the four general physical kinetic boundary
conditions:
• In-flow: F (t , x , v)|�� = G(t , x , v).
• Bounce-back: F (t , x , v)|�� = F (t , x ,�v). (non-physical)
• Specular reflection:

F (t , x , v)|�� = F (t , x ,Rxv), Rxv = v � 2(v · n(x))n(x).

• Diffusive reflection:

F (t , x , v)|�� = µ(v)
Z

n(x)·v 0>0
F (t , x , v 0)(n(x) · v 0)dv 0.



Introduction Kinetic Equation Boundary Conditions

A large difficulty to study the initial boundary value problems for the
Boltzmann equation is that there can be a singularity at the boundary
(Guo-Kim-Tonon-Trescaes, 2017), and this singularity may propagate
to the interior of the domains (Kim, 2011).



Mathematical theory of rarefied gas flow Close to equilibrium

Perturbation framework

We consider the normalized global Maxwellian equilibrium:

µ(v) = (2⇡)�3/2 exp(�|v |2/2)

We make a reformulation of F (t , x , v) as

F (t , x , v) = µ+ g(t , x , v), g(t , x , v) = µ1/2f (t , x , v)

Then the perturbation f = f (t , x , v) evolves via the equation

@t f + v ·rx f + Lf = �(f , f )

where the non-linear and linearized collision operators are

�(f , g) = µ� 1
2Q(

p
µf ,pµg), Lf = ��(f ,pµ)� �(

p
µ, f )



Mathematical theory of rarefied gas flow Semi-group approach

Brief review of literature in perturbative framework

• Anglar cutoff case with ⌦ = T3 or R3

• 0  �  1: Ukai (1974), Space X = L1
� (Hs

x ), s > 3/2.
• �1 < � < 0: Ukai-Asano (1982), Space: X = L1

� (Hs
x ), s > 3/2.

Approach: Look for a fixed point f (t , x , v) in

C([0,1);X )

to the integral equation

f (t) = etBf0 +
Z t

0
e(t�s)B�(f , f )(s) ds,

with B = �v ·rx � L.



Mathematical theory of rarefied gas flow Energy method

Boltzmann equation with angular cutoff soft potentials �3 < � < 0, and
Landau equation.
• Guo (2002, 2003, ...), Space X = Hs

t ,x ,v , s � 4.
• Time-decay for soft potentials: Strain-Guo (2006,2008), ...

Approach: Energy method – Obtain uniform a priori estimates

d
dt kf (t)k2

X + kf (t)k2
D,X . kf (t)kXkf (t)k2

D,X .

• Trilinear estimates:
���(@�(f , f ), @f )L2

x,v

��� . kf (t)kXkf (t)k2
D,X ,

• Separately estimate the dissipation of the macroscopic part:

Pf = {af + bf · v + cf |v |2}µ1/2,

in terms of moment equations:

@ta +r · b = ...

@tb +r(a + 2c) + ... = ...

@t c +r · b + ... = ...

...



Mathematical theory of rarefied gas flow Energy method

Non-cutoff Boltzmann equation with ⌦ = T3 or R3

• AMUXY (Series 2011-2012), Space X = H4(R3
x ⇥ R3

v )

|||f |||2 def
=

Z

R6⇥S2
B(v � v⇤,�)µ⇤(f 0 � f )2dv⇤dvd�

+

Z

R6⇥S2
B(v � v⇤,�)f 2

⇤

⇣p
µ0

⇤ �
p
µ⇤
⌘2

dv⇤dvd�.

• Gressman-S. (2011), Space X = H2
x L2

v (T3
x ⇥ R3

v ) for the hard
potentials and soft potentials from an inverse power law, Norm:

|f |2Ns,�
def
=

���hvi
�+2s+1

2 f (v)
���
2

L2
v

+

Z

R3
dv

Z

R3
dv 0 �hvihv 0i

� �+2s+1
2

(f (v)� f (v 0))2

d(v , v 0)3+2s ,

with d(v , v 0) =
q
|v � v 0|2 + 1

4(|v |2 � |v 0|2)2.

• Remark that |||{I � P}f |||2 ⇡ |{I � P}f |2Ns,� ⇡ (f , Lf )L2
v
.



Mathematical theory of rarefied gas flow Mild tail

Polynomial or exponential velocity weight: ⌦ = T3

Existence of g with F = µ+ g such that m(v)g 2 L1
v L1

x (Mild Tail)
• Cutoff case:

• Arkeryd-Esposito-Pulvirenti (C.M.P., 1987)
• Gualdani-Mishler-Mouhot (2013) (Mém. Soc. Math. Fr., 2017)

• Landau case:
• Carrapatoso-Mischler (2017), Space X = H2

x L2
v (T3 ⇥ R3,m).

• Non-cutoff case:
• Herau-Tonon-Tristani (2017, arXiv:1710.01098): Cauchy theory and

exponential stability for inhomogeneous Boltzmann equation for
hard potentials without cut-off. Space X = H3

x L2
v (T3 ⇥ R3,m).

• He-Jiang (2017, arXiv:1710.00315): On the global dynamics of the
inhomogeneous Boltzmann equations without angular cutoff: Hard
potentials and Maxwellian molecules.
Space X = H

3
2 +

x L2
v (T3 ⇥ R3,m).

• Alonso-Morimoto-Sun-Yang (2018, arXiv:1812.05299): Non-cutoff
Boltzmann equation with polynomial decay perturbation.
Space X = H2

x L2
v (T3 ⇥ R3,m).



Mathematical theory of rarefied gas flow Including the boundary

Existence of L1
x ,v solutions in bounded domains

Guo (2010): Hard potentials, cutoff case:

f (t) 2 L1(⌦,w)

Approach: Let f (t) = U(t)f0 solves {@t + v ·rx + L}f = 0, f |t=0 = f0.

• L2 time-decay: kf (t)kL2 . e��tkf0kL2

• L1 time-decay: Let L = ⌫ � K . For a velocity-growth weight,
h = wf solves {@t + v ·rx + ⌫}h = Kwh with Kw

def
= wK 1

w . Double
duhamel Principle (Vidav, 1970) gives

U(t) = G(t) +
Z t

0
ds G(t � s)Kw U(s)

= G(t) +
Z t

0
ds G(t � s)Kw G(s)

+

Z t

0
ds

Z s

0
d⌧ G(t � s)Kw G(s � ⌧)Kw U(⌧).

The key is to estimate L1 norm of the 3rd term.

JJ O



Mathematical theory of rarefied gas flow Including the boundary

Lots of recent activity on the boundary value problem
Results for the cutoff Boltzmann equation in a plate

• C. Cercignani [1967], Existence and uniqueness in the large for boundary value problems in kinetic theory.
• Esposito-Lebowitz-Marra [1994], Hydrodynamic limit of the stationary Boltzmann equation in a slab.
• Esposito-Lebowitz-Marra [1995], The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation.

Results in a general bounded domain
• C. Cercignani [1968], Existence, uniqueness, and convergence of the solutions of models in kinetic theory.
• Shizuta and Asano (1977).
• S. Mischler [2010], DiPerna-Lions renormalized solution to the Boltzmann equation, VP and VFP for the maxwell

boundary condition with non-constant accommodation coefficient.
• S. Mischler [CMP, 2010] DiPerna-Lions renormalized solution for the initial boundary value problem for VPB.
• Y. Guo [2010], Decay and continuity of the Boltzmann equation in bounded domain by an L2 \ L1 argument (Four basic

boundary conditions with angular cutoff).
• C. Kim [2011], Propagation of discontinuity for Boltzmann equaiton in non-convex domain. Kim (2013).
• Esposito-Guo-Kim-Marra [2013], Stationary solution of the Boltzmann equation with diffuse reflection boundary condition.
• Briant (2014), exponential lower bound (non-cutoff)
• Guo-Kim-Tonon-Trescases [2017], Regularity of the Boltzmann equation in convex domain.
• Briant-Guo [2017], Maxwell boundary condition for the Boltzmann equation (↵ 2 (

p
2/3, 1]).

• Jiang-Zhang (2017), Global existence of renormalized solution (non-cutoff)
• Liu-Yang [2017], The initial boundary value problem for the Boltzmann equation with soft potential.
• Duan-Wang [2018], The Boltzmann equation with large-amplitude initial data in bounded domains.
• Esposito-Guo-Kim-Marra [2018], Stationary solutions to the Boltzmann equation in the Hydrodynamic limit.
• Kim and Lee (2018, 2019) Boltzmann equation with specular boundary condition in convex domains
• Guo-Hwang-Jang-Ouyang [2020, ARMA], On the Landau equation with the specular reflection boundary condition
• Chen and Kim (2020) Regularity of Stationary Boltzmann equation in Convex domains
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Mathematical theory of rarefied gas flow Lower regularity solutions

Besov space existence theories for Boltzmann
Low regularity: (replace X = H3/2+

x with X still embedded into L1
x ):

• Duan-Liu-Xu (ARMA 2016): GWP in critical Besov space
(X = B3/2

2,1 ). for cutoff Boltzmann equation with hard potentials
• Morimoto-Sakamoto (JDE 2016): non-cutoff, hard potentials
• Duan-Sakamoto (KRM 2018): non-cutoff, soft potentials

Approach: energy-spectrum (Besov spaces):

F = µ+ µ1/2f ,

kfkT
def
= sup

q��1
2qs sup

0tT
k�qf (t , ·, ·)kL2

x,v
, s =

3
2
,

motivated by the Chemin-Lerner space for treating the INS.
X

q��1

2qs sup
0tT

k�qu(t)kL2
x
< 1.



Mathematical theory of rarefied gas flow Wiener Algebra

New space: Wiener Algebra A(⌦)

For a function f defined on a domain ⌦ the Wiener algebra is the
space of functions such that the Fourier transform satisfies f̂ (k) 2 L1

k :

A(Tn)
def
= {f :

P
k2Zn |f̂ (k)| < 1}.

It is important to point out that we have the embedding

A(Tn) ⇢ L1(Tn).

The space A(Tn) is a Banach algebra:
X

k2Zn

|f̂ ⇤ ĝ(k)| 
X

k2Zn

|f̂ (k)|
X

j2Zn

|ĝ(j)|.

The non-locality of the Wiener algebra allows us to use this space
in ways that we still don’t know how for L1(T3) in the context of
proving estimates for the non-cutoff Boltzmann equation.



Mathematical theory of rarefied gas flow Wiener Algebra

In the whole space ⌦ = R3, we define the Wiener Algebra space
A(⌦) = L1

⇠ as the set of tempered distributions on R3 whose Fourier
transform is integrable.

Scale of spaces:

L1
x � L1

⇠ � B3/2
2,1 � H3/2+

x � H2
x .

Known examples show that the Wiener algebra L1
⇠ space contains

bounded and continuous functions with any arbitrarily low order of
regularity, when regularity is measured using the Fourier transform.

Therefore we think of the Wiener algebra as “L1
x + a little bit more

structure.”

Still it appears to be an open problem to characerize the Wiener
algebra A(⌦) in terms of other function spaces.



Mathematical theory of rarefied gas flow Wiener Algebra

Example with slowly decaying Fourier transform
Let � be a smooth decaying function with �̂ 2 [�1, 1], �̂(0) = 1 and
�̂(⇠) = 0 when |⇠| > 1. Then for fixed k define

f̂k (⇠) =
1X

n=1

�̂(⇠ � nk ) + �̂(⇠ + nk )

n2 .

Then for fixed ⇠, at most one term in f̂k is non-zero. Further f̂k has best
uniform decay rate for all ⇠ as

���f̂k (⇠)
��� 

C
|⇠|2/k .

This function has representation

fk (x) = �(x)
1X

n=1

2 cos(nkx)
n2 .

Thus a continuous function in the Wiener algebra can have arbitrarily
slow decay of the Fourier transform.



Mathematical theory of rarefied gas flow Wiener Algebra

Recent works using the Wiener Algebra A(⌦) in PDE

Recent works using A(⌦) in Fluid Dynamics
• Duchon and Robert (1988) J.D.E.
• Lei and Lin (2011) C. P. A. M.
• Constantin, Córdoba, Gancedo, and S., (2013) J.E.M.S.
• Constantin, Córdoba, Gancedo, Rodríguez-Piazza, and S., (2016)

A. J. M.
• Patel and S., (2017) C.P.D.E.
• Gancedo, García-Juárez, Patel, and S., (2019) A. M.

Recent works using A(⌦) in Materials Science:
• Liu and S. (2019) I.F.B.
• Granero-Belinchón and M. Magliocca (2019) D.C.D.S.-A.
• Ambrose (2019) preprint



Main results Functional spaces

New functional space in Kinetic theory
To study well-posedness of the problems in the perturbative
framework, we first introduce a function space XT with 0 < T  1,
which is a crucial point. For example in a torus T3, we define

XT
def
= L1

kL1
T L2

v

with norm
kfkXT

def
=

X

k2Z3

sup
0tT

kf̂ (t , k , ·)kL2
v
.

The Fourier transform of f (x) with respect to x 2 T3 is

bf (k) def
=

Z

T3
f (x)e�ix ·kdx , k 2 Z3.

This is a Chemin-Lerner type space because the supremum over
0  t  T is taken before the L1

k (Z3) norm, and this feature plays an
important role in controlling the quadratically nonlinear terms.



Main results Functional spaces

Norms and function spaces

• Macroscopic projection: Pf = {a + b · v + c|v |2}µ1/2.
• Linearized collision operator satisfies Lg = L{I � P}g.
• Define a “dissipation norm” by k{I � P}fk2

L2
D
⇡ (Lf , f )L2

v
. (This L2

D

norm is defined precisely in both the non-cutoff Boltzmann case
and in the Landau case.)

• Define a velocity weight function: wq,#(v) = e
qhvi#

4 with
hvi =

p
1 + |v |2 for q � 0 and # 2 (0, 2].

• And now we introduce the corresponding weighted norms

��wq,#f
��

L1
k L1

T L2
v

def
=

X

k2Z3

sup
0tT

���wq,#bf (t , k)
���

L2
v
,

��wq,#f
��

L1
k L2

T L2
D

def
=

X

k2Z3

 Z T

0

���wq,#bf (t , k)
���

2

L2
D

dt

!1/2

.



Main results Main theorems on the Torus

Global theorem on torus without regularity

Theorem 1 (Global existence and uniqueness)

Exists ✏0 > 0 and C0 > 0 such that if F0(x , v) = µ+ µ
1
2 f0(x , v) � 0 and

kwq,#f0kL1
k L2

v
 ✏0,

then there exists a unique global mild solution f (t , x , v), t > 0, x 2 T3,
v 2 R3 for the Landau equation or the non-cutoff Boltzmann equation
satisfying the non-negativity condition

F (t , x , v) = µ+ µ
1
2 f (t , x , v) � 0

and for any T > 0 we have the uniform estimate

kwq,#fkL1
k L1

T L2
v
+ kwq,#fkL1

k L2
T L2

D
 C0kwq,#f0kL1

k L2
v
.



Main results Main theorems on the Torus

Theorem 2 (Large-time behavior)

Moreover, for fixed  2 (0, 1],  = (�, s,#), depending on the the
Landau or the non-cutoff Boltzmann collision operator as well as wq,#,
respectively, there is � > 0 such that the solution also enjoys the
uniform time decay estimate

kf (t)kL1
k L2

v
. e��tkwq,#f0kL1

k L2
v
,

for any t � 0.

Remark
Recent numerical study on the possible sharp 2/3 rate of large time
decay for the Landau equation with Coulomb interaction (� = �3) in
Bobylev-Gamba-Zhang (2017) J.S.P.; Pennie-Gamba (2019)
(arXiv:1910.03110) also obtains the same behavior using a completely
different numerical method; We obtain this decay rate,  = 2

3 above,
when � = �3, s = 1, and # = 2.



Main results Main theorems on the Torus

Theorem 3 (Propagation of spatial regularity: hkim)

Let all the conditions in Theorem 1 be satisfied, then for any integer
m � 0, there is an ✏m > 0 and a Cm > 0 such that if

X

k2Z3

hkimkwq,# f̂0(k)kL2
v

def
= kwq,#f0kL1

k,mL2
v
 ✏m,

then the solution f (t , x , v) established in Theorem 1 satisfies

X

k2Z3

hkim sup
0tT

kwq,# f̂ (t , k)kL2
v
+

X

k2Z3

hkimkwq,# f̂ (t , k)kL2
T L2

D

 Cmkwq,#f0kL1
k,mL2

v

for any T > 0.

Remark: We expect that this theorem may be improved to only require
the smallness condition from Theorem 1.



Main results Main theorems on the Torus

On T3, these solutions have C1 smoothing

• Due to the L1
x embedding, these solutions have bounded (in

space and time) mass, energy, and entropy (in velocity).
• Recent work of Imbert-Silvestre (2019, arXiv:1909.12729), also

their review article (2020, arXiv:2005.02997), proves the C1
t ,x ,v

smoothing effect for the non-cutoff Boltzmann equation with the
hard potentials � + 2s � 0 conditional to the macroscopic
quantities (mass, energy, and entropy) being bounded in space
and time. Plus some minor velocity bounds.

• Our solutions satisfy the assumptions of their theorem when
� + 2s � 0 and thus experience the C1

t ,x ,v smoothing effect. (I am
ignoring some technical issues when �  0 for simplicity.)

• These currently may be the lowest regularity global in time
solutions to the non-cutoff Boltzmann equation that are known to
experience the C1

t ,x ,v regularization.



Main results Summary of main results

• In summary our theorems establish global existence, uniqueness,
non-negativity, large time decay rates to equilibrium, and
propagation of spatial regularity.

• The theorems above hold for the non-cutoff Boltzmann equation
and the Landau equation in the space XT

def
= L1

kL1
T L2

v without using
regularity in the torus T3 with periodic boundary conditions.

• These theorems will also hold in the whole space R3 with suitable
modifications to the time decay rate without regularity.

• We have analogous theorems in the space L1
k̄ L1

T L2
x1

L2
v using one

spatial derivative in the finite channel

⌦ = I ⇥ T2 =
�

x = (x1, x̄), x1 2 (�1, 1), x̄ := (x2, x3) 2 T2 .

with the inflow boundary conditions on (�1, 1).
• We also have analogous theorems in the finite channel with the

specular reflection boundary condition, further using a standard
symmetry condition, f0(�x1,�v1) = f0(x1, v1), on the initial data
(which allows us to rule out the singularity at the boundary).



Main results Summary of main results

High Level Strategy of Proof: Illustrative toy model

Toy model of the energy method machinery for the heat equation:
Suppose u is a periodic solution of the heat equation

@u
@t

=
@2u
@x2 .

We can multiply both sides by u and integrate with respect to x :
Z 1

0
u
@u
@t

dx =

Z 1

0
u
@2u
@x2 dx )

1
2

d
dt

Z 1

0
(u(x , t))2dx = �

Z 1

0

✓
@u
@x

(x , t)
◆2

dx

From here we see that square-integrable solutions of the heat equation
have norms that decrease in time. We can even add extra nonlinear
terms to this equation as long as they can be shown to be “small”
relative to the square integral of @u

@x .



The Proof Main uniform energy inequality

A key step in the proof

X

k2Z3

sup
0tT

kf̂ (t , k , ·)kL2
v
+
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k2Z3

 Z T

0
k{I � P}f̂ (t , k , ·)k2

L2
D

dt
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v
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This inequality for solutions indicates that as long as one can further
appropriately estimate the macroscopic dissipation:

X

k2Z3

kPf̂ (k)kL2
T L2

D
⇡

X

k2Z3

k(\a, b, c)(k)k2
L2

T

We can then obtain a global in time uniform estimate on the solution
under the smallness assumption on kfkL1

k L1
T L2

v
that can be closed using

a continuity argument provided kf0kL1
k L2

v
is initially suitably small.



The Proof Main uniform energy inequality

Proof of the global inequality

@t f + v ·rx f + Lf = �(f , f ),

Taking the Fourier transform in x 2 T3 we obtain

@t f̂ (t , k , v) + iv · k f̂ (t , k , v) + Lf̂ (t , k , v) = �̂(f̂ , f̂ )(t , k , v).

Here, for brevity �̂ indicates convolutions in k :

�̂(f̂ , ĝ)(k , v) =
Z

R3

Z

S2
B(v�u,�)µ1/2(u)

⇣
[f̂ (u0) ⇤ ĝ(v 0)](k)� [f̂ (u) ⇤ ĝ(v)](k)
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d�du,

where the convolutions are taken with respect to k 2 Z3:

[f̂ (u0) ⇤ ĝ(v 0)](k) def
=
X

l2Z3

f̂ (k � l , u0)ĝ(l , v 0).



The Proof Main uniform energy inequality

We use the coercivity estimate for L (for �0 > 0):

(Lf̂ , f̂ )L2
v
� �0k{I � P}f̂k2

L2
D

and integrate over L2
v to obtain
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v

��� d⌧.

Taking the square root on both sides and using the elementary
inequality 1p

2
(A + B) 

p
A2 + B2  A + B, we further have
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.



The Proof Main uniform energy inequality

So, we have derived, for any 0  t  T and k 2 Z3, that we

kf̂ (t , k , ·)kL2
v
+

✓Z t
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L2
D
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v

��� d⌧
◆1/2)

,

with C0 > 0. Moreover, taking sup0tT on both sides above and then
summing the resulting inequality over k 2 Z3, we have
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Q: How do you estimate the non-linear term?



The Proof Non-linear estimates

Trilinear estimates
By the definition of �̂(·, ·) as well as Fubini’s theorem:
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The Proof Non-linear estimates

Trilinear estimates

• As above we have
���(�̂(f̂ , ĝ)(k), ĥ(k))L2

v
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• Now we can directly use the old estimates
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v
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D
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D
.

E.g. Guo (2002, Landau), AMUXY (2011, non-cutoff Boltzmann),
Gressman-S. (2011, non-cutoff Boltzmann), S.-Zhu (2013,
improvement for Landau)

• From both of those together, we obtain the trilinear estimate
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The Proof Non-linear estimates

Trilinear estimates
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kĥ(k)kL2

D

Then we estimate the non-linear term as follows for any small ✏ > 0:
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The non-locality of the Fourier transform helps a lot where it is still
open to prove an estimate like this using instead L1

x .



The Proof Non-linear estimates

Trilinear estimates
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We also have the following identity:
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Using this for ĥ = {I � P}f̂ allows us to directly establish:
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This is the main uniform global inequality in our existence proof.



The end Thanks

Thank you!
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