Instability and non-uniqueness of Leray solutions of the forced Navier-Stokes equations, Part 3^{1}

Elia Brué

Institute for Advanced Study, Princeton elia.brue@ias.edu

September 19, 2022

[^0]
Main result

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u+\nabla p-\Delta u=f & \tag{NS}\\ \operatorname{div} u=0 & \\ u(\cdot, 0)=u_{0} & \text { on } \mathbb{R}^{3} \times[0, T]\end{cases}
$$

Theorem (Albritton-B.-Colombo '21, '22)
Let Ω be \mathbb{R}^{3}, a smooth bounded domain, or \mathbb{T}^{3}. Then, there exist u and \bar{u}, two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L_{t}^{1} L_{x}^{2}$ and $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$. When Ω is a bounded domain, u and \bar{u} satisfy no-slip boundary conditions and f is supported far away from the boundary.

Previous lectures

Theorem (Albritton-B.-Colombo '21)

There exist two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L_{t}^{1} L_{x}^{2}$ and $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$.

- Linear instability: There exists $\bar{U} \in C_{C}^{\infty}$ such that

$$
\mathcal{L}_{\mathrm{ss}}: D\left(\mathcal{L}_{\mathrm{ss}}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}
$$

has a maximal unstable eigenvalue.

- Nonlinear instability: The unstable eigenvalue can be perturbed to \bar{U}, an unstable trajectory for (ssNS). In standard variables, $u(x, t)=\frac{1}{\sqrt{t}} U(\xi)$ provides a second solution to (NS) with body force f and $u(0, \cdot)=0$.

Theorem (Linear instability)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.
$\mathcal{L}_{s s}: D\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\mathrm{ss}} V=-\frac{1}{2}(1+\xi \cdot \nabla) V-\Delta V+\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})
$$

has a maximal unstable eigenvalue.

Theorem (Nonlinear instability)

Let $\lambda \in \mathbb{C}, \operatorname{Re} \lambda>0$, be a maximal unstable eigenvalue of \bar{U} with eigenfunction $\eta \in H^{k}$ for all $k \in \mathbb{N}$. Set $U^{\text {lin }}(\xi, \tau)=\operatorname{Re}\left(e^{\lambda \tau} \eta(\xi)\right)$. There exist $T \in \mathbb{R}$ and a div-free vector field $U^{\text {per }}: \mathbb{R}^{3} \times(-\infty, T) \rightarrow \mathbb{R}^{3}$ such that

- Regularity and decay:

$$
\left\|U^{\operatorname{per}}(\cdot, \tau)\right\|_{H^{k}} \lesssim e^{2 a \tau}, \quad \tau \leq T, k \geq 0
$$

- $U:=\bar{U}+U^{\text {lin }}+U^{\text {per }}$ solves

$$
\begin{equation*}
\partial_{\tau} U-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+U \cdot \nabla U+\nabla P=F \tag{ssNS}
\end{equation*}
$$

Construction of a linear unstable backgrounds

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: D\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
\begin{gathered}
D\left(\mathcal{L}_{\mathrm{ss}}\right):=\left\{V \in L_{\sigma}^{2}: V \in H^{2}\left(\mathbb{R}^{3}\right), \xi \cdot \nabla U \in L^{2}\left(\mathbb{R}^{3}\right)\right\}, \\
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U}),
\end{gathered}
$$

has an unstable eigenvalue.

Definition (Linear Instability)
We say that $\mathcal{L}_{\mathrm{ss}}: D\left(\mathcal{L}_{\mathrm{ss}}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}$ has an unstable eigenvalue if there exist

- $\lambda \in \mathbb{C}$ with $a:=\operatorname{Re} \lambda>0$
- $\eta \in H^{k}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ for any $k>0$, with $\operatorname{div} \eta=0$
such that

$$
\mathcal{L}_{\mathrm{ss}} \eta=\lambda \eta .
$$

Gluing non-unique Navier-Stokes solutions

Theorem (Albritton-B.-Colombo '22)
Let Ω be a smooth bounded domain, or \mathbb{T}^{3}. Then, there exist u and \bar{u}, two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L_{t}^{1} L_{x}^{2}$, initial condition $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$, and no-slip boundary conditions.

Plan of the talk

- Linear instability and Vortex ring construction
- Gluing non-unique Navier-Stokes solutions
- Open questions

Linear instability and vortex ring construction

Construction of a linear unstable backgrounds

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: D\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
\begin{gathered}
D\left(\mathcal{L}_{\mathrm{ss}}\right):=\left\{V \in L_{\sigma}^{2}: V \in H^{2}\left(\mathbb{R}^{3}\right), \xi \cdot \nabla U \in L^{2}\left(\mathbb{R}^{3}\right)\right\}, \\
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U}),
\end{gathered}
$$

has an unstable eigenvalue.

Definition (Linear Instability)
We say that $\mathcal{L}_{\mathrm{ss}}: D\left(\mathcal{L}_{\mathrm{ss}}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}$ has an unstable eigenvalue if there exist

- $\lambda \in \mathbb{C}$ with $a:=\operatorname{Re} \lambda>0$
- $\eta \in H^{k}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ for any $k>0$, with $\operatorname{div} \eta=0$
such that

$$
\mathcal{L}_{\mathrm{ss}} \eta=\lambda \eta .
$$

2D Instability: Vishik's theorem

$$
L_{m}^{2}\left(\mathbb{R}^{2}\right):=\bigotimes_{k=1}^{\infty}\left\{\omega \in L^{2}\left(\mathbb{R}^{2}\right): \omega=f(r) e^{k k n \theta}\right\} .
$$

Theorem (Vishik '18, ABCDGJK'21)
There exist $m \geq 2$ and a smooth decaying vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r),
$$

such that $\mathcal{L}: D(\mathcal{L}) \subset L_{m}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{m}^{2}\left(\mathbb{R}^{2}\right)$,

$$
\mathcal{L} \omega=-\zeta(r) \partial_{\theta} \omega-\left(\mathrm{BS}_{2}[\omega] \cdot e_{r}\right) g^{\prime}(r) .
$$

has an unstable eigenvalue.

How to build an unstable 3D-vortex ring

- Step 1: We truncate \bar{u} to get an unstable, compactly supported vortex
- Step 2: We use the truncate vortex as a radial profile of 3D-Axisymmetric-no-swirl velocity field
- Step 3: We show that the vortex ring inherits the instability of Vishik's vortex

Step 1: Compactly supported unstable vortex

Let $\lambda_{\infty} \in \mathbb{C} \cap\{\operatorname{Re}>0\}$ be an unstable eigenvalue of

$$
\mathcal{L} \omega=-\zeta(r) \partial_{\theta} \omega-\left(\mathrm{BS}_{2}[\omega] \cdot e_{r}\right) g^{\prime}(r),
$$

where $u=\zeta(r) x^{\perp}, \omega=g(r)$ is Vishik's unstable vortex.
Proposition (Truncated unstable vortex)
For any $\varepsilon \in\left(0, \operatorname{Re} \lambda_{\infty}\right)$, if $R \geq R(\varepsilon, u)$ the following holds. The linear operator

$$
\mathcal{L}_{R}: D\left(\mathcal{L}_{R}\right) \subset L_{m}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{m}^{2}\left(\mathbb{R}^{2}\right)
$$

associated with the truncated vortex

$$
\bar{u}_{R}(x)=\zeta(r) \chi_{R}(r) x^{\perp}, \quad \bar{\omega}(x)=\operatorname{curl} \bar{u}_{R}(x)=g_{R}(r),
$$

admits an unstable eigenvalue λ_{R} with $\left|\lambda_{R}-\lambda_{\infty}\right| \leq \varepsilon$.

Spectral projection

- Spectral projection: Let \vec{c} be a simple closed curve in \mathbb{C},

$$
\operatorname{Pr}_{\vec{c}}(\mathcal{L})=\frac{1}{2 \pi i} \int_{\vec{c}} R(\lambda, \mathcal{L}) \mathrm{d} \lambda
$$

is the spectral projection in the region enclosed by \vec{c}.

- Resolvent:

$$
R(\lambda, \mathcal{L})=(\lambda-\mathcal{L})^{-1}
$$

- Let \vec{c} a simple closed curve enclosing λ_{∞}, we need to prove that

$$
\operatorname{Pr}_{\vec{c}}\left(\mathcal{L}_{R}\right) \rightarrow \operatorname{Pr}_{\vec{c}}(\mathcal{L}), \quad \text { as } R \rightarrow \infty
$$

- It is enough to show that

$$
R\left(\lambda, \mathcal{L}_{R}\right) \rightarrow R(\lambda, \mathcal{L}), \quad \text { as } R \rightarrow \infty, \text { for any } \lambda \in \vec{c}
$$

Spectral perturbation argument

- We write

$$
\begin{aligned}
\lambda-\mathcal{L}_{R} & =\lambda-\mathcal{L}+\left(\mathcal{L}-\mathcal{L}_{R}\right) \\
& =(\lambda-\mathcal{L})\left[I+R(\lambda, \mathcal{L})\left(\mathcal{L}-\mathcal{L}_{R}\right)\right] \\
& =(\lambda-\mathcal{L})+o(1), \quad \text { as } R \rightarrow \infty
\end{aligned}
$$

Where we used that $\mathcal{L}_{R} \rightarrow \mathcal{L}$ in a suitable sense.

- It is immediate to conclude that

$$
R\left(\lambda, \mathcal{L}_{R}\right) \rightarrow R(\lambda, \mathcal{L}), \quad \text { as } R \rightarrow \infty, \text { for any } \lambda \in \vec{c}
$$

Step 2: Lifting the truncated vortex to a vortex ring

Let $u(x)=\zeta(r) x^{\perp}, \omega=\operatorname{curl} u=g(r)$ be a vortex. Let

$$
\mathcal{L} \omega=-\zeta(r) \partial_{\theta} \omega-\left(\mathrm{BS}_{2}[\omega] \cdot \boldsymbol{e}_{r}\right) g^{\prime}(r),
$$

be the associated linearized operator. We assume that

- Compactly supported: supp $u, \operatorname{supp} \omega \subset B_{1}(0)$
- Instability: There exist $\lambda \in \mathbb{C} \cap\{\operatorname{Re}>0\}$ and $\rho \in L^{2}\left(\mathbb{R}^{2}\right)$ such that $\mathcal{L} \rho=\lambda \rho$.

Remark

supp $\rho \subset B_{1}(0)$ and λ is an isolated eigenvalue.

Axisymmetric-no-swirl structure

$$
x=(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3}
$$

Axisymmetric-no-swirl vector fields:

$$
\begin{gathered}
U=U^{r}(r, z) e_{r}+U^{z}(r, z) e_{z} \\
\text { curl } U=-\left(\partial_{z} U^{r}-\partial_{r} U^{z}\right) e_{\theta}=-\Omega(r, z) e_{\theta}
\end{gathered}
$$

- We assume $\bar{U}=\bar{U}^{r}(r, z) e_{r}+\bar{U}^{z}(r, z) e_{z}$.
- The space

$$
L_{\text {ans }}^{2}\left(\mathbb{R}^{3}\right):=\left\{U \in L_{\sigma}^{2}\left(\mathbb{R}^{3}\right): U \text { is axisymmetric-no-swirl }\right\}
$$

is invariant under the action of

$$
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

The 3D vortex ring

- Let $u, \omega=\operatorname{curl} u$ be the unstable compactly supported vortex,

$$
u(x)=u\left(x_{1}, x_{2}\right)=\left(u^{1}\left(x_{1}, x_{2}\right), u^{2}\left(x_{1}, x_{2}\right)\right), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

- Let $\ell \gg 1$. We set

$$
\tilde{U}(r, z)=u^{1}(r-\ell, z) e_{r}+u^{2}(r-\ell, z) e_{z}
$$

Notice that

$$
\operatorname{curl} \tilde{U}=-\omega(r-\ell, z) e_{\theta}
$$

The 3D vortex ring

- Divergence:

$$
\operatorname{div} \tilde{U}=\left(\partial_{r}+\frac{1}{r}\right) u^{1}+\partial_{z} u^{2}=\frac{1}{r} u^{1} \ll 1 \quad \text { if } \ell \gg 1
$$

- Correction of the divergence: There exists $V_{\ell} \in C_{c}^{\infty}\left(B_{2} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{gathered}
\operatorname{div}\left(\tilde{U}+V_{\ell}\right)=0, \\
V_{\ell} \rightarrow 0, \quad \text { in } C^{k} \text { for all } k, \text { as } \ell \rightarrow \infty .
\end{gathered}
$$

- Final vortex ring: For any $\ell \gg 1$ we set

$$
\bar{U}_{\ell}=\tilde{U}+V_{\ell} .
$$

Step 3: Instability of the vortex ring

Theorem (Instability of \bar{U}_{ℓ})
There exists ℓ_{0} such that, if $\ell \geq \ell_{0}$ then the linear operator

$$
-\mathcal{L}_{\mathrm{ss}, \ell} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}\left(\bar{U}_{\ell} \cdot \nabla U+U \cdot \nabla \bar{U}_{\ell}\right),
$$

admits an unstable eigenvalue, i.e. there exist $\lambda_{\ell} \in \mathbb{C} \cap\{\operatorname{Re}>0\}$ and $\eta_{\ell} \in H^{k}$ for any $k \geq 0$, such that $\mathcal{L}_{s s, \ell} \eta_{\ell}=\lambda_{\ell} \eta_{\ell}$.

- Since \bar{U}_{ℓ} is axisymmetric-no-swirl, we have

$$
\mathcal{L}_{\mathrm{ss}, \ell}: D\left(\mathcal{L}_{\mathrm{ss}, \ell}\right) \subset L_{\text {ans }}^{2} \rightarrow L_{\text {ans }}^{2}
$$

$$
\text { and } \eta_{\ell} \in L_{\text {ans }}^{2} \text { as well. }
$$

Idea of proof

- First reduction: It is enough to prove instability for the operator

$$
-\mathcal{L}_{\mathrm{st}, \ell} U=\mathbb{P}\left(\bar{U}_{\ell} \cdot \nabla U+U \cdot \nabla \bar{U}_{\ell}\right) .
$$

- Second reduction: We study the spectral problem in vorticity formulation

$$
\mathcal{L}_{\mathrm{vor}, \ell}: D\left(\mathcal{L}_{\mathrm{vor}, \ell}\right) \subset L_{\mathrm{aps}}^{2} \rightarrow L_{\mathrm{aps}}^{2} .
$$

- Key observation: When $\ell \gg 1$ the operator $\mathcal{L}_{\text {vor }, \ell}$ is "close" to

$$
\mathcal{L} \omega=-\zeta(r) \partial_{\theta} \omega-\left(\mathrm{BS}_{2}[\omega] \cdot e_{r}\right) g^{\prime}(r) .
$$

First reduction

- Perturbative argument: If $\mathcal{L}_{\mathrm{st}, \ell} U=-\mathbb{P}\left(\bar{U}_{\ell} \cdot \nabla U+U \cdot \nabla \bar{U}_{\ell}\right)$ admits an unstable eigenvalue, then there exists $\beta \ll 1$ such that

$$
-\mathcal{L}_{\beta} U=-\beta\left(\frac{1}{2}(1+\xi \cdot \nabla) U+\Delta U\right)+\mathbb{P}\left(\bar{U}_{\ell} \cdot \nabla U+U \cdot \nabla \bar{U}_{\ell}\right) .
$$

- By replacing \bar{U}_{ℓ} with $\frac{1}{\beta} \bar{U}_{\ell}$, we get that $\mathcal{L}_{\mathrm{ss}, \ell}$ admits an unstable eigenvalue.

Second reduction

- We set

$$
\mathcal{L}_{\text {vor }, \ell}:=\operatorname{curl} \circ \mathcal{L}_{\mathrm{st}, \ell} \circ \mathrm{BS}_{3 d}: D\left(\mathcal{L}_{\text {vor }, \ell}\right) \subset L_{\text {aps }}^{2} \rightarrow L_{\text {aps }}^{2} .
$$

- We identify

$$
L_{\mathrm{aps}}^{2}\left(\mathbb{R}^{3}\right) \sim L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \quad-\omega(r, z) e_{\theta} \sim \omega(r, z),
$$

hence,

$$
\mathcal{L}_{\text {vor }, \ell}: D\left(\mathcal{L}_{\text {vor }, \ell}\right) \subset L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right) \rightarrow L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)
$$

- $\operatorname{curl} \bar{U}_{\ell}=-\bar{\omega}_{\ell} e_{\theta}, \omega \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$,

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\text {vor }, \ell} \omega:=\left(\bar{U}_{\ell} \cdot \nabla\right) \omega+(U \cdot \nabla) \bar{\omega}_{\ell}-\frac{\bar{U}_{\ell}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega}_{\ell} \\
U=\mathrm{BS}_{3 d}\left[-\omega e_{\theta}\right] .
\end{array}\right.
$$

Convergence to Vishik's operator

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\text {vor }, \ell} \omega:=\left(\bar{U}_{\ell} \cdot \nabla\right) \omega+(U \cdot \nabla) \bar{\omega}_{\ell}-\frac{\bar{U}_{\ell}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega}_{\ell} \\
U=\mathrm{BS}_{\ell}[\omega] .
\end{array}\right.
$$

- $\left(\bar{U}_{\ell} \cdot \nabla\right) \omega \rightarrow(u \cdot \nabla) \omega$
- $\bar{\omega}_{\ell} \rightarrow \omega=\operatorname{curl} u$
- $-\frac{\bar{U}_{\ell}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega}_{\ell} \rightarrow 0$
$-\mathrm{BS}_{\ell}[\omega] \rightarrow \mathrm{BS}_{2 d}[\omega]$
In conclusion:

$$
\mathcal{L}_{\text {vor }, \ell} \omega \rightarrow \mathcal{L} \omega=-\zeta(r) \partial_{\theta} \omega-\left(\mathrm{BS}_{2}[\omega] \cdot e_{r}\right) g^{\prime}(r)
$$

Convergence of BS laws

- Let $\omega \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$, we have

$$
\mathrm{BS}_{3 d}\left[-\omega \boldsymbol{e}_{\theta}\right]=-\partial_{z} \psi \boldsymbol{e}_{r}+\left(\partial_{r}+\frac{1}{r}\right) \psi \boldsymbol{e}_{z} .
$$

where, the stream function ψ is obtained by solving

$$
\partial_{r}^{2} \psi+\frac{1}{r} \partial_{r} \psi-\frac{1}{r^{2}} \psi+\partial_{z}^{2} \psi=\omega \quad \text { in } \mathbb{R}_{+} \times \mathbb{R} .
$$

- Let $\omega \in L^{2}\left(\mathbb{R}^{2}\right)$, we have

$$
\mathrm{BS}_{2 d}[\omega]=-\partial_{x_{2}} \psi e_{1}+\partial_{x_{1}} \psi e_{2} .
$$

where, the stream function ψ is obtained by solving

$$
\partial_{x_{1}}^{2} \psi+\partial_{x_{2}}^{2} \psi=\omega \quad \text { in } \mathbb{R}^{2} .
$$

Gluing non-unique Navier-Stokes solutions

Gluing non-unique Navier-Stokes solutions

Theorem (Albritton-B.-Colombo '22)
Let Ω be a smooth bounded domain, or \mathbb{T}^{3}. Then, there exist u and \bar{u}, two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L_{t}^{1} L_{x}^{2}$, initial conditions $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$, and no-slip boundary conditions.

- The non-uniqueness in \mathbb{R}^{3} is driven by the instability of

$$
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{u}\left(\frac{x}{\sqrt{t}}\right) .
$$

- The non-uniqueness "emerges" from the irregularity at the space-time origin and is expected to be local.

Gluing non-unique Navier-Stokes solutions

Assume that $B_{1 / 2}(0) \subset \Omega$.

- For $t \ll 1$, we have

$$
\operatorname{supp} \bar{u}(t, \cdot), \operatorname{supp} f(t, \cdot) \subset B_{1 / 2}(0) \subset \Omega .
$$

Hence, (\bar{u}, f) satisfies (NS) in Ω with no-slip boundary conditions.

- The second solution $u=\bar{u}+u^{\text {lin }}+u^{\text {per }}$ is supported on the hole \mathbb{R}^{3}.
- Goal: We want to build a new solution v to (NS) in Ω, s.t.
- v satisfies no-slip boundary conditions
- $v \sim u$ in $B_{1 / 10}(0) \subset \Omega$

The main Ansatz

$$
v(x, t)=\bar{u}(x, t)+\eta(x) \varphi(x, t)+\psi(x, t), \quad x \in \Omega, t \in\left(0, t_{0}\right) .
$$

- η is a smooth cut-off function, i.e.

$$
\eta=1 \quad \text { in } B_{1 / 9}(0), \quad \eta=0 \quad \text { in } \Omega \backslash B_{1 / 7}(0) .
$$

- φ is the inner solution, i.e. it will satisfy $\varphi \sim u$.
- ψ is the outer solution, it satisfies no-slip boundary conditions.

Inner and outer equations

We plug the Ansatz

$$
v(x, t)=\bar{u}(x, t)+\eta(x) \varphi(x, t)+\psi(x, t)
$$

into (NS) and we decouple the system as follows.

- Inner equation: In self-similar variables, $\xi=x / \sqrt{t}, \tau=\log (t)$,

$$
\varphi(x, t)=\frac{1}{\sqrt{t}} \Phi(\xi, \tau), \quad \psi(x, t)=\frac{1}{\sqrt{t}} \Psi(\xi, \tau), \quad \eta(x)=N(\xi, \tau)
$$

We have

$$
\begin{aligned}
\partial_{\tau} \Phi-\mathcal{L}_{\mathrm{ss}} \Phi & +\Phi \cdot \nabla(\Phi N)+\operatorname{div}(\tilde{N} \Psi \otimes \Phi+\tilde{N} \Phi \otimes \Psi) \\
& +\bar{U} \cdot \nabla \Psi+\Psi \cdot \nabla \bar{U}+\nabla \Pi=0
\end{aligned}
$$

where $\tilde{N}(\xi, \tau)=N(\xi / 3, \tau)$.

- Outer equation:

$$
\begin{array}{r}
\partial_{t} \psi-\Delta \psi+\psi \cdot \nabla \psi+\nabla \pi-\varphi \Delta \eta-2 \nabla \varphi \cdot \nabla \eta+(\psi \cdot \nabla \eta) \varphi=0 \\
\operatorname{div} \psi=-\nabla \eta \cdot \varphi
\end{array}
$$

Inner equation

$$
\begin{aligned}
\partial_{\tau} \Phi-\mathcal{L}_{s s} \Phi & +\Phi \cdot \nabla(\Phi N)+\operatorname{div}(\tilde{N} \psi \otimes \Phi+\tilde{N} \phi \otimes \psi) \\
& +\bar{U} \cdot \nabla \psi+\psi \cdot \nabla \bar{U}+\nabla \Pi=0,
\end{aligned}
$$

- We solve in the whole \mathbb{R}^{3} using linear instability and the Ansatz

$$
\Phi=\phi^{\text {lin }}+\Phi^{\text {per }} .
$$

- The orange terms are linear, but small.
- The purple terms are non-linear.

Outer equation

$$
\begin{array}{r}
\partial_{t} \psi-\Delta \psi+\psi \cdot \nabla \psi+\nabla \pi-\varphi \Delta \eta-2 \nabla \varphi \cdot \nabla \eta+(\psi \cdot \nabla \eta) \varphi=0 \\
\operatorname{div} \psi=-\nabla \eta \cdot \varphi
\end{array}
$$

- It amounts to solve the Navier-Stokes equation with inhomogeneous divergence and no-slip boundary conditions.
- The purple terms are treated as perturbations. Small because:
- All the derivatives of η are concentrated on $A=B_{1 / 7}(0) \backslash B_{1 / 9}(0)$
- Φ decays at infinity, hence $\varphi(x, t)=\frac{1}{\sqrt{t}} \Phi(x / \sqrt{t}, \log (t))$ is small in A, when $t \ll 1$.

Functional setting and fixed point argument

For $\bar{t}>0, \bar{\tau}=\log (\bar{t})$, and $\alpha, \beta>0$, we define the norms

$$
\begin{aligned}
&\|\Phi\|_{X_{\bar{\tau}}^{\alpha}}:=\sup _{\tau \leq \bar{\tau}} e^{-\tau \alpha}\|\Phi(\cdot, \tau)\|_{L_{w}^{\infty}} \\
&\|\psi\|_{Y_{\bar{t}}^{\beta}}:=\sup _{s \in(0, \bar{t})} s^{-\beta}\|\psi(\cdot, s)\|_{L^{\infty}(\Omega)}
\end{aligned}
$$

- Fixed-point argument in the space

$$
Z_{\bar{t}}^{\alpha, \beta}:=X_{\bar{\tau}}^{\alpha} \times Y_{\bar{t}}^{\beta} .
$$

- Key ingredients: Weighted semigroup estimate

$$
\left\|e^{\tau \mathcal{L}_{s s} \mathbb{P}} \operatorname{div}\right\|_{L_{w}^{D} \rightarrow L_{w}^{\infty}} \leq C(p, \delta) \tau^{-\left(\frac{1}{2}+\frac{3}{2 p}\right)} e^{(a+\delta) \tau},
$$

for any $p \in(3,+\infty], \delta>0$.

Conclusions

Weak solutions to the forced (NS) in the energy class, i.e. Leray solutions, are not unique.

- The non-uniqueness in \mathbb{R}^{3} is driven by extreme the instability of a self-similar solution

$$
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{U}\left(\frac{x}{\sqrt{t}}\right)
$$

in full agreement with [Jia-Sverak' 14] and [Sverak-Guillod '18].

- The non-uniqueness "emerges" from the irregularity at the space-time origin shows a certain locality and robustness.

Open problems

- Is it possible to remove the force?
- There should be many unstable profiles \bar{U}. How generic are they? Is there an easier way to find them?
- Gluing non-unique solutions to the Euler equations?

Thank you for your attention!

[^0]: ${ }^{1}$ Joint with D. Albritton and M. Colombo

