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Main result

ou+(u-VYu+Vp—Au=f
divu=0 onR® x [0, T] (NS)
u(-,0) = uo

Theorem (Albritton-B.-Colombo 21, ’22)

LetQ be R®, a smooth bounded domain, or T2. Then, there exist u and U, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force
feL}l? and u(-,0) = u(-,0) = 0. When Q is a bounded domain, u and
satisfy no-slip boundary conditions and f is supported far away from the
boundary.



Previous lectures

Theorem (Albritton-B.-Colombo '21)
There exist two distinct suitable Leray-Hopf solutions to (NS) with identical
body force f € L} 12 and u(-,0) = &(-,0) = 0.

> Linear instability: There exists U € CZ° such that
Ly :D(Ly) C L2 — L%
has a maximal unstable eigenvalue.

> Nonlinear instability: The unstable eigenvalue can be perturbed to U, an
unstable trajectory for (ssNS). In standard variables, u(x, t) = %U(f)
provides a second solution to (NS) with body force f and u(0, -) = 0.



Theorem (Linear instability)
There exists a divergence-free vector field U € C5°(R%; R®) s.t.
Lss: D(Lss) C L5(R%R?) — L5(R%R?)

1

—LsV =—3(1 +¢-V)V-AV+PU-VV+V.-VU)

has a maximal unstable eigenvalue.

Theorem (Nonlinear instability)

Let X € C, Re) > 0, be a maximal unstable eigenvalue of U with
eigenfunction n € H* for all k € N. Set U™ (¢, 1) = Re(e*"n(€)). There exist
T € R and a div-free vector field UP" : R® x (—co, T) — R® such that

» Regularity and decay:

IO (o)l S €%, 7< T, k=0

> U:= U+ U™+ U solves

8TU71§(1+§.v)UfAU+U'VU+VP:F (ssNS)



Construction of a linear unstable backgrounds

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field U € C3°(R% R?) s.t. the linear
operator Lss : D(Lss) C /_i(R3;R3) N Lf,(R3;R3)

D(Ly):={Vel?:VeH (R, ¢ VUel*R%},

—cssuz—%u +&-V)U—-AU+PU-VU+U-VD),

has an unstable eigenvalue.

Definition (Linear Instability)
We say that £, : D(Ls) C L2 — L2 has an unstable eigenvalue if there exist
> AeCwitha:=ReX >0

> 5 e H*(R%;R®) for any k > 0, with div ; = 0

such that
Len = An.



Gluing non-unique Navier-Stokes solutions

Theorem (Albritton-B.-Colombo '22)

Let Q be a smooth bounded domain, or T2. Then, there exist u and U, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force

f € L} 12, initial condition u(-,0) = &(-,0) = 0, and no-slip boundary
conditions.



Plan of the talk

» Linear instability and Vortex ring construction
» Gluing non-unique Navier-Stokes solutions

» Open questions



Linear instability and vortex ring construction



Construction of a linear unstable backgrounds

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field U € C3°(R% R?) s.t. the linear
operator Lss : D(Lss) C /_i(R3;R3) N Lf,(R3;R3)

D(Ly):={Vel?:VeH (R, ¢ VUel*R%},

—cssuz—%u +&-V)U—-AU+PU-VU+U-VD),

has an unstable eigenvalue.

Definition (Linear Instability)
We say that £, : D(Ls) C L2 — L2 has an unstable eigenvalue if there exist
> AeCwitha:=ReX >0

> 5 e H*(R%;R®) for any k > 0, with div ; = 0

such that
Len = An.



2D Instability: Vishik’s theorem

L?n(RZ) = é{w c LZ(RZ) = f(r)e"k'”e}l

k=1

Theorem (Vishik 18, ABCDGJK’21)
There exist m > 2 and a smooth decaying vortex

o(x) =¢(nxt,  @(x) =g(r),
such that £ : D(L) C L2,(R?) — L2(R?),
Lw = —((rdew — (BS2[w] - €r)g'(r).

has an unstable eigenvalue.



How to build an unstable 3D-vortex ring

» Step 1: We truncate u to get an unstable, compactly supported vortex

> Step 2: We use the truncate vortex as a radial profile of
3D-Axisymmetric-no-swirl velocity field

> Step 3: We show that the vortex ring inherits the instability of Vishik’s
vortex



Step 1: Compactly supported unstable vortex

Let Ao € CN {Re > 0} be an unstable eigenvalue of
Lw = —((r)0ow — (BS2[w] - €)g'(r),

where u = ¢(r)x*, w = g(r) is Vishik's unstable vortex.

Proposition (Truncated unstable vortex)
For any ¢ € (0,Re)\), if R > R(e, u) the following holds. The linear operator

Lr: D(LR) C LA (R?) — L[2(R?)
associated with the truncated vortex
Ur(x) = ¢(Nxa(Nx*,  @(x) = curl Ta(x) = ga(r),

admits an unstable eigenvalue Ag with |Ag — Ao| < €.



Spectral projection

c > Spectral projection: Let ¢ be a
simple closed curve in C,

1

is the spectral projection in the
region enclosed by C.

» Resolvent:

v R L)=(A-£L)"".
> Let ¢ a simple closed curve enclosing A, we need to prove that

Prz(Lr) — Przg(£), asR— co.

v

It is enough to show that

R(\, Lg) — R(\, L), as R— oo, forany A € ¢.



Spectral perturbation argument

» We write

A—Lp=A—L+ (L~ Ln)
= (A= L)[I+ R\, L)(L — LR)]
=(A-£L)+o(1), asR— oo.

Where we used that Lz — £ in a suitable sense.
» |t is immediate to conclude that

R(\, Lg) = R(\, L), asR— oo, forany A € .



Step 2: Lifting the truncated vortex to a vortex ring

Let u(x) = ¢(r)x*, w = curl u = g(r) be a vortex. Let
Lw = —((r)0ow — (BS2[w] - €)g'(r),
be the associated linearized operator. We assume that
» Compactly supported: supp u,suppw C Bi(0)
> Instability: There exist A\ € C N {Re > 0} and p € L3(R?) such that
Lp = Ap.

Remark
supp p C By(0) and ) is an isolated eigenvalue.



Axisymmetric-no-swirl structure

X = (rcosf,rsinf, z) € R®

Axisymmetric-no-swirl vector fields:

U=U(r,2)er + U(r,2)e;,

curlU = —(0,U" — 0,U%) ey = —Q(r, 2)ey .

> We assume U = U'(r, 2)er + U*(r, 2)e; .
» The space
L2 (R%) := {U € L5(R®) : Uis axisymmetric-no-swirl}

is invariant under the action of

fz:ssuzféu +&- V) U—-AU+PU-VU+U-VU).



The 3D vortex ring

» Let u, w = curl u be the unstable compactly supported vortex,
u(x) = u(x, x2) = (u'(x1, x2), P (x1, %)), X = (x1, %) € R?
> Let > 1. We set
U(r,z) = u'(r—¢,2)er + P(r — ¢, 2)e;

Notice that

cul U = —w(r—1¢,z)ey.




The 3D vortex ring

» Divergence:

divl = (a,+17) u‘+azu?:17u1 <1 ife>1

> Correction of the divergence: There exists V, € C°(Bz; R®) such that
div(U+ V) =0,

V. » 0, inCfforallk,as¢— co.

» Final vortex ring: For any £ > 1 we set

Ue:UJrVg.



Step 3: Instability of the vortex ring

Theorem (Instability of Uy)
There exists ¢y such that, if £ > ¢, then the linear operator

—Lg U= —%(1 +E-VU-AU+PU,-VU+U-VU),

admits an unstable eigenvalue, i.e. there exist A\ € CN {Re > 0} and
ne € H* for any k > 0, such that L ¢ = Aene.
> Since U, is axisymmetric-no-swirl, we have
[rss,f : D(Lss,é) C Lfns — Lgns

and 7, € L2 as well.



Idea of proof

» First reduction: It is enough to prove instability for the operator

_['st,ZU = P(Ue -VU+ U- VU@)

» Second reduction: We study the spectral problem in vorticity formulation

ACvor,[ : D(cvor,l) C I—gps — Lgps .

> Key observation: When ¢ > 1 the operator Ly, ¢ is “close” to

Lw = —((r)dew — (BS2[w] - €)g'(r) -



First reduction

> Perturbative argument: If Ly U = —P(U, - VU + U - VU,) admits an
unstable eigenvalue, then there exists 8 <« 1 such that

—LgU=-p (%(1 +§-V)U+AU) +P(U, - VU4 U-VU,).

> By replacing U, with - Ur, we get that L, » admits an unstable
eigenvalue.



Second reduction

> We set
Lyor,e :=curlo Ly ¢ 0BSzq : D(,Cvor,z) C prs — prs.
» We identify
LEPS(R'B) ~ LZ(R+ X R)v —w(f,Z)ee Nw(f,Z),
hence,

[fvor,l . D(['vor,l) C LZ(RJr X R) — LZ(R+ X R) .

> curl U, = —@ep, w € L2(R+ x R),

_Evor,fw = (UZ . V)w + (U . V)Q_}[ - %UJ - UTrJ)Z
U = BSaq[-wey] .



Convergence to Vishik’s operator

{ —Lyorow = (U - VIw+ (U- V)@ é——w_ le
U = BS[w].
> (U V)w— (u-V)w
> oy —w=curlu
> —%w — U—Qg —0
» BS¢[w] — BSzq[w]
In conclusion:

Lyor.ow — Lw = —((r)dpw — (BS2[w] - €)g'(r)



Convergence of BS laws

> Letw € L3(R; x R), we have
1
BS34[—wes] = -0 er + (8, + 7) v es.
where, the stream function ¢ is obtained by solving

aEer%a,wf :—21/1+8§1/):w in Ry xR.

> Letw € L?(R?), we have
BSzg[w] = —0x,0 €1 + Ox ¢ €2
where, the stream function 1) is obtained by solving

R+ =w in R



Gluing non-unique Navier-Stokes solutions



Gluing non-unique Navier-Stokes solutions

Theorem (Albritton-B.-Colombo '22)
Let Q be a smooth bounded domain, or T2. Then, there exist u and U, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force

f e L}12, initial conditions u(-,0) = &(-,0) = 0, and no-slip boundary
conditions.

» The non-uniqueness in R® is driven by the instability of

G(x, ) = ku(\%) .

» The non-uniqueness “emerges” from the irregularity at the space-time
origin and is expected to be local.



Gluing non-unique Navier-Stokes solutions

Assume that By /»(0) C Q.
» Fort <« 1, we have
supp U(t,-),supp f(t,-) C By,2(0) C Q.
Hence, (U, f) satisfies (NS) in Q with no-slip boundary conditions.
» The second solution u = U+ u"™ 4 uP*" is supported on the hole R®.

» Goal: We want to build a new solution v to (NS) in Q, s.t.

> v satisfies no-slip boundary conditions
> v~ uinBj/0(0) CQ



The main Ansatz

vix,t) =u(x, t) + n(x)e(x,t) + v(x,t), xe€Q, te(0,b).

» 7 is a smooth cut-off function, i.e.

n=1 1inBj,(0), n=0 inQ\B;;(0).

> ¢ is the inner solution, i.e. it will satisfy ¢ ~ u.

> 1) is the outer solution, it satisfies no-slip boundary conditions.



Inner and outer equations
We plug the Ansatz
v(x, t) = u(x, t) + n(x)e(x, t) + 9(x, t)
into (NS) and we decouple the system as follows.

» Inner equation: In self-similar variables, £ = x/\/f, 7 = log(t),

o, 1) = %mm), b(x.t) = %w(m, n(x) = N(E, 7)

We have
Dr® — L + & - V(ON) + div(NV @ & + No @ W)
+U-VV+V.VU+VN=0,
where N(¢,7) = N(¢/3, 7).
» Quter equation:

o) — DAY+ -Vip+Vr—pAn—2V¢-Vn+ (¥ -Vn)p =0
divi) = -Vn- o



Inner equation

0:d — L® + & - V(ON) + div(NV @ & + Nob @ W)
+U- VW v.-vU+VN=0,

> We solve in the whole R® using linear instability and the Ansatz

¢ = (blin + (bper )

» The orange terms are linear, but small.

» The purple terms are non-linear.



Outer equation

O — DAY+ -Vo+Vr—pAn—2Vep-Vn+ (Y- Vn)e =0
divyy =—-Vn-p

» It amounts to solve the Navier-Stokes equation with inhomogeneous
divergence and no-slip boundary conditions.

> The purple terms are treated as perturbations. Small because:
> All the derivatives of n are concentrated on A = B;,7(0) \ By 9(0)

> & decays at infinity, hence ¢(x, t) = %CD(X/\ft, log(t)) is small in A, when
t< 1.



Functional setting and fixed point argument

Fort > 0, 7 = log(?), and «, 8 > 0, we define the norms

[®llxe := sup e™ " (|(-, 7)||Lge
<7

[llys == sup s °[[(-, 8) (o)
t se(0,1)

» Fixed-point argument in the space

ZoP =X x Y

» Key ingredients: Weighted semigroup estimate
”ev'llss]P; div ||Lﬁ/~>LM°,° < C(p7 6)T*(%+237,)e(a+6)7 ,

forany p € (3, +o0], § > 0.



Conclusions

Weak solutions to the forced (NS) in the energy class, i.e. Leray solutions,
are not unique.

> The non-uniqueness in R® is driven by extreme the instability of a

self-similar solution ;
_ - x
ux,t)y=—U|(—=),
0= 70( %)

in full agreement with [Jia-Sverak’ 14] and [Sverak-Guillod '18].

» The non-uniqueness “emerges” from the irregularity at the space-time
origin shows a certain locality and robustness.



Open problems

> [s it possible to remove the force?

> There should be many unstable profiles U. How generic are they? Is
there an easier way to find them?

» Gluing non-unique solutions to the Euler equations?

Thank you for your attention!



