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Main result


∂tu + (u · ∇)u +∇p −∆u = f
div u = 0
u(·, 0) = u0

on R3 × [0,T ] (NS)

Theorem (Albritton-B.-Colombo ’21, ’22)
Let Ω be R3, a smooth bounded domain, or T3. Then, there exist u and ū, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force
f ∈ L1

t L2
x and u(·, 0) = ū(·, 0) = 0. When Ω is a bounded domain, u and ū

satisfy no-slip boundary conditions and f is supported far away from the
boundary.



Previous lectures

Theorem (Albritton-B.-Colombo ’21)
There exist two distinct suitable Leray-Hopf solutions to (NS) with identical
body force f ∈ L1

t L2
x and u(·, 0) = ū(·, 0) = 0.

I Linear instability: There exists Ū ∈ C∞c such that

Lss : D(Lss) ⊂ L2
σ → L2

σ

has a maximal unstable eigenvalue.

I Nonlinear instability: The unstable eigenvalue can be perturbed to Ū, an
unstable trajectory for (ssNS). In standard variables, u(x , t) = 1√

t
U(ξ)

provides a second solution to (NS) with body force f and u(0, ·) = 0.



Theorem (Linear instability)
There exists a divergence-free vector field Ū ∈ C∞c (R3;R3) s.t.
Lss : D(Lss) ⊂ L2

σ(R3;R3)→ L2
σ(R3;R3)

−LssV = −1
2

(1 + ξ · ∇)V −∆V + P(Ū · ∇V + V · ∇Ū)

has a maximal unstable eigenvalue.

Theorem (Nonlinear instability)
Let λ ∈ C, Reλ > 0, be a maximal unstable eigenvalue of Ū with
eigenfunction η ∈ Hk for all k ∈ N. Set U lin(ξ, τ) = Re(eλτη(ξ)). There exist
T ∈ R and a div-free vector field Uper : R3 × (−∞,T )→ R3 such that
I Regularity and decay:

‖Uper(·, τ)‖Hk . e2aτ , τ ≤ T , k ≥ 0

I U := Ū + U lin + Uper solves

∂τU − 1
2

(1 + ξ · ∇)U −∆U + U · ∇U +∇P = F (ssNS)



Construction of a linear unstable backgrounds

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field Ū ∈ C∞c (R3;R3) s.t. the linear
operator Lss : D(Lss) ⊂ L2

σ(R3;R3)→ L2
σ(R3;R3)

D(Lss) := {V ∈ L2
σ : V ∈ H2(R3) , ξ · ∇U ∈ L2(R3)} ,

−LssU = −1
2

(1 + ξ · ∇)U −∆U + P(Ū · ∇U + U · ∇Ū) ,

has an unstable eigenvalue.

Definition (Linear Instability)
We say that Lss : D(Lss) ⊂ L2

σ → L2
σ has an unstable eigenvalue if there exist

I λ ∈ C with a := Reλ > 0

I η ∈ Hk (R3;R3) for any k > 0, with div η = 0

such that
Lssη = λη .



Gluing non-unique Navier-Stokes solutions

Theorem (Albritton-B.-Colombo ’22)
Let Ω be a smooth bounded domain, or T3. Then, there exist u and ū, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force
f ∈ L1

t L2
x , initial condition u(·, 0) = ū(·, 0) = 0, and no-slip boundary

conditions.



Plan of the talk

I Linear instability and Vortex ring construction

I Gluing non-unique Navier-Stokes solutions

I Open questions



Linear instability and vortex ring construction



Construction of a linear unstable backgrounds

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field Ū ∈ C∞c (R3;R3) s.t. the linear
operator Lss : D(Lss) ⊂ L2

σ(R3;R3)→ L2
σ(R3;R3)

D(Lss) := {V ∈ L2
σ : V ∈ H2(R3) , ξ · ∇U ∈ L2(R3)} ,

−LssU = −1
2

(1 + ξ · ∇)U −∆U + P(Ū · ∇U + U · ∇Ū) ,

has an unstable eigenvalue.

Definition (Linear Instability)
We say that Lss : D(Lss) ⊂ L2

σ → L2
σ has an unstable eigenvalue if there exist

I λ ∈ C with a := Reλ > 0

I η ∈ Hk (R3;R3) for any k > 0, with div η = 0

such that
Lssη = λη .



2D Instability: Vishik’s theorem

L2
m(R2) :=

∞⊗
k=1

{ω ∈ L2(R2) : ω = f (r)eikmθ} .

Theorem (Vishik ’18, ABCDGJK’21)
There exist m ≥ 2 and a smooth decaying vortex

ū(x) = ζ(r)x⊥ , ω̄(x) = g(r) ,

such that L : D(L) ⊂ L2
m(R2)→ L2

m(R2),

Lω = −ζ(r)∂θω − (BS2[ω] · er )g′(r) .

has an unstable eigenvalue.



How to build an unstable 3D-vortex ring

I Step 1: We truncate ū to get an unstable, compactly supported vortex

I Step 2: We use the truncate vortex as a radial profile of
3D-Axisymmetric-no-swirl velocity field

I Step 3: We show that the vortex ring inherits the instability of Vishik’s
vortex



Step 1: Compactly supported unstable vortex

Let λ∞ ∈ C ∩ {Re > 0} be an unstable eigenvalue of

Lω = −ζ(r)∂θω − (BS2[ω] · er )g′(r) ,

where u = ζ(r)x⊥, ω = g(r) is Vishik’s unstable vortex.

Proposition (Truncated unstable vortex)
For any ε ∈ (0,Reλ∞), if R ≥ R(ε, u) the following holds. The linear operator

LR : D(LR) ⊂ L2
m(R2)→ L2

m(R2)

associated with the truncated vortex

ūR(x) = ζ(r)χR(r)x⊥ , ω̄(x) = curl ūR(x) = gR(r) ,

admits an unstable eigenvalue λR with |λR − λ∞| ≤ ε.



Spectral projection

I Spectral projection: Let ~c be a
simple closed curve in C,

Pr~c(L) =
1

2πi

∫
~c

R(λ,L) dλ

is the spectral projection in the
region enclosed by ~c.

I Resolvent:

R(λ,L) = (λ− L)−1 .

I Let ~c a simple closed curve enclosing λ∞, we need to prove that

Pr~c(LR)→ Pr~c(L) , as R →∞ .

I It is enough to show that

R(λ,LR)→ R(λ,L) , as R →∞, for any λ ∈ ~c .



Spectral perturbation argument

I We write

λ− LR = λ− L+ (L − LR)

= (λ− L)[I + R(λ,L)(L − LR)]

= (λ− L) + o(1) , as R →∞ .

Where we used that LR → L in a suitable sense.

I It is immediate to conclude that

R(λ,LR)→ R(λ,L) , as R →∞, for any λ ∈ ~c .



Step 2: Lifting the truncated vortex to a vortex ring

Let u(x) = ζ(r)x⊥, ω = curl u = g(r) be a vortex. Let

Lω = −ζ(r)∂θω − (BS2[ω] · er )g′(r) ,

be the associated linearized operator. We assume that

I Compactly supported: supp u, suppω ⊂ B1(0)

I Instability: There exist λ ∈ C ∩ {Re > 0} and ρ ∈ L2(R2) such that
Lρ = λρ.

Remark
supp ρ ⊂ B1(0) and λ is an isolated eigenvalue.



Axisymmetric-no-swirl structure

x = (r cos θ, r sin θ, z) ∈ R3

Axisymmetric-no-swirl vector fields:

U = U r (r , z)er + Uz(r , z)ez ,

curlU = −(∂zU r − ∂r Uz)eθ = −Ω(r , z)eθ .

I We assume Ū = Ū r (r , z)er + Ūz(r , z)ez .

I The space

L2
ans(R3) := {U ∈ L2

σ(R3) : U is axisymmetric-no-swirl}

is invariant under the action of

−LssU = −1
2

(1 + ξ · ∇)U −∆U + P(Ū · ∇U + U · ∇Ū) .



The 3D vortex ring

I Let u, ω = curl u be the unstable compactly supported vortex,

u(x) = u(x1, x2) = (u1(x1, x2), u2(x1, x2)) , x = (x1, x2) ∈ R2

I Let `� 1. We set

Ũ(r , z) = u1(r − `, z)er + u2(r − `, z)ez

Notice that
curl Ũ = −ω(r − `, z)eθ .



The 3D vortex ring

I Divergence:

div Ũ =

(
∂r +

1
r

)
u1 + ∂zu2 =

1
r

u1 � 1 if `� 1

I Correction of the divergence: There exists V` ∈ C∞c (B2;R3) such that

div(Ũ + V`) = 0 ,

V` → 0 , in Ck for all k , as `→∞ .

I Final vortex ring: For any `� 1 we set

Ū` = Ũ + V` .



Step 3: Instability of the vortex ring

Theorem (Instability of Ū`)
There exists `0 such that, if ` ≥ `0 then the linear operator

−Lss,`U = −1
2

(1 + ξ · ∇)U −∆U + P(Ū` · ∇U + U · ∇Ū`) ,

admits an unstable eigenvalue, i.e. there exist λ` ∈ C ∩ {Re > 0} and
η` ∈ Hk for any k ≥ 0, such that Lss,`η` = λ`η`.

I Since Ū` is axisymmetric-no-swirl, we have

Lss,` : D(Lss,`) ⊂ L2
ans → L2

ans

and η` ∈ L2
ans as well.



Idea of proof

I First reduction: It is enough to prove instability for the operator

−Lst,`U = P(Ū` · ∇U + U · ∇Ū`) .

I Second reduction: We study the spectral problem in vorticity formulation

Lvor,` : D(Lvor,`) ⊂ L2
aps → L2

aps .

I Key observation: When `� 1 the operator Lvor,` is “close” to

Lω = −ζ(r)∂θω − (BS2[ω] · er )g′(r) .



First reduction

I Perturbative argument: If Lst,`U = −P(Ū` · ∇U + U · ∇Ū`) admits an
unstable eigenvalue, then there exists β � 1 such that

−LβU = −β
(

1
2

(1 + ξ · ∇)U + ∆U
)

+ P(Ū` · ∇U + U · ∇Ū`) .

I By replacing Ū` with 1
β

Ū`, we get that Lss,` admits an unstable
eigenvalue.



Second reduction

I We set

Lvor,` := curl ◦ Lst,` ◦ BS3d : D(Lvor,`) ⊂ L2
aps → L2

aps .

I We identify

L2
aps(R3) ∼ L2(R+ × R) , −ω(r , z)eθ ∼ ω(r , z) ,

hence,
Lvor,` : D(Lvor,`) ⊂ L2(R+ × R)→ L2(R+ × R) .

I curl Ū` = −ω̄`eθ, ω ∈ L2(R+ × R),{
−Lvor,`ω := (Ū` · ∇)ω + (U · ∇)ω̄` − Ūr

`
r ω −

Ur

r ω̄`

U = BS3d [−ωeθ] .



Convergence to Vishik’s operator

{
−Lvor,`ω := (Ū` · ∇)ω + (U · ∇)ω̄`− Ūr

`
r ω −

Ur

r ω̄`

U = BS`[ω] .

I (Ū` · ∇)ω → (u · ∇)ω

I ω̄` → ω = curl u

I − Ūr
`

r ω −
Ur

r ω̄` → 0

I BS`[ω]→ BS2d [ω]

In conclusion:

Lvor,`ω → Lω = −ζ(r)∂θω − (BS2[ω] · er )g′(r)



Convergence of BS laws

I Let ω ∈ L2(R+ × R), we have

BS3d [−ωeθ] = −∂zψ er +

(
∂r +

1
r

)
ψ ez .

where, the stream function ψ is obtained by solving

∂2
r ψ +

1
r
∂rψ −

1
r 2ψ + ∂2

zψ = ω in R+ × R .

I Let ω ∈ L2(R2), we have

BS2d [ω] = −∂x2ψ e1 + ∂x1ψ e2 .

where, the stream function ψ is obtained by solving

∂2
x1ψ + ∂2

x2ψ = ω in R2 .



Gluing non-unique Navier-Stokes solutions



Gluing non-unique Navier-Stokes solutions

Theorem (Albritton-B.-Colombo ’22)
Let Ω be a smooth bounded domain, or T3. Then, there exist u and ū, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force
f ∈ L1

t L2
x , initial conditions u(·, 0) = ū(·, 0) = 0, and no-slip boundary

conditions.

I The non-uniqueness in R3 is driven by the instability of

ū(x , t) =
1√
t
Ū
(

x√
t

)
.

I The non-uniqueness “emerges” from the irregularity at the space-time
origin and is expected to be local.



Gluing non-unique Navier-Stokes solutions

Assume that B1/2(0) ⊂ Ω.

I For t � 1, we have

supp ū(t , ·), supp f (t , ·) ⊂ B1/2(0) ⊂ Ω .

Hence, (ū, f ) satisfies (NS) in Ω with no-slip boundary conditions.

I The second solution u = ū + ulin + uper is supported on the hole R3.

I Goal: We want to build a new solution v to (NS) in Ω, s.t.
I v satisfies no-slip boundary conditions
I v ∼ u in B1/10(0) ⊂ Ω



The main Ansatz

v(x , t) = ū(x , t) + η(x)ϕ(x , t) + ψ(x , t) , x ∈ Ω , t ∈ (0, t0) .

I η is a smooth cut-off function, i.e.

η = 1 in B1/9(0) , η = 0 in Ω \ B1/7(0) .

I ϕ is the inner solution, i.e. it will satisfy ϕ ∼ u.

I ψ is the outer solution, it satisfies no-slip boundary conditions.



Inner and outer equations

We plug the Ansatz

v(x , t) = ū(x , t) + η(x)ϕ(x , t) + ψ(x , t)

into (NS) and we decouple the system as follows.

I Inner equation: In self-similar variables, ξ = x/
√

t , τ = log(t),

ϕ(x , t) =
1√
t

Φ(ξ, τ) , ψ(x , t) =
1√
t

Ψ(ξ, τ) , η(x) = N(ξ, τ)

We have

∂τΦ− LssΦ + Φ · ∇(ΦN) + div(ÑΨ⊗ Φ + ÑΦ⊗Ψ)

+ Ū · ∇Ψ + Ψ · ∇Ū +∇Π = 0 ,

where Ñ(ξ, τ) = N(ξ/3, τ).

I Outer equation:

∂tψ −∆ψ + ψ · ∇ψ +∇π − ϕ∆η − 2∇ϕ · ∇η + (ψ · ∇η)ϕ = 0

divψ = −∇η · ϕ



Inner equation

∂τΦ− LssΦ + Φ · ∇(ΦN) + div(ÑΨ⊗ Φ + ÑΦ⊗Ψ)

+ Ū · ∇Ψ + Ψ · ∇Ū +∇Π = 0 ,

I We solve in the whole R3 using linear instability and the Ansatz

Φ = Φlin + Φper .

I The orange terms are linear, but small.

I The purple terms are non-linear.



Outer equation

∂tψ −∆ψ + ψ · ∇ψ +∇π − ϕ∆η − 2∇ϕ · ∇η + (ψ · ∇η)ϕ = 0

divψ = −∇η · ϕ

I It amounts to solve the Navier-Stokes equation with inhomogeneous
divergence and no-slip boundary conditions.

I The purple terms are treated as perturbations. Small because:
I All the derivatives of η are concentrated on A = B1/7(0) \ B1/9(0)

I Φ decays at infinity, hence ϕ(x , t) = 1√
t
Φ(x/

√
t , log(t)) is small in A, when

t � 1.



Functional setting and fixed point argument

For t̄ > 0, τ̄ = log(̄t), and α, β > 0, we define the norms

‖Φ‖Xατ̄ := sup
τ≤τ̄

e−τα‖Φ(·, τ)‖L∞w

‖ψ‖Yβ
t̄

:= sup
s∈(0,̄t)

s−β‖ψ(·, s)‖L∞(Ω) .

I Fixed-point argument in the space

Zα,βt̄ := Xα
τ̄ × Yβ

t̄ .

I Key ingredients: Weighted semigroup estimate

‖eτLssP div ‖Lp
w→L∞w

≤ C(p, δ)τ
−( 1

2 + 3
2p )e(a+δ)τ ,

for any p ∈ (3,+∞], δ > 0.



Conclusions

Weak solutions to the forced (NS) in the energy class, i.e. Leray solutions,
are not unique.

I The non-uniqueness in R3 is driven by extreme the instability of a
self-similar solution

ū(x , t) =
1√
t
Ū
(

x√
t

)
,

in full agreement with [Jia-Sverak’ 14] and [Sverak-Guillod ’18].

I The non-uniqueness “emerges” from the irregularity at the space-time
origin shows a certain locality and robustness.



Open problems

I Is it possible to remove the force?
I There should be many unstable profiles Ū. How generic are they? Is

there an easier way to find them?
I Gluing non-unique solutions to the Euler equations?

Thank you for your attention!


