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Main result

ou+(u-VYu+Vp—Au=f
divu=0 onR® x [0, T] (NS)
u(-,0) = uo

Theorem (Albritton-B.-Colombo 21, ’22)

LetQ be R®, a smooth bounded domain, or T2. Then, there exist u and U, two
distinct suitable Leray-Hopf solutions to (NS) with identical body force
feL}l? and u(-,0) = u(-,0) = 0. When Q is a bounded domain, u and
satisfy no-slip boundary conditions and f is supported far away from the
boundary.



Strategy of proof when Q = R3



Self-similar structure

> There exists a div-free velocity field U € C°(R?; R®) s.t.
1 -/ x
ux,)y=—U| — | .
0= (%)
e C®Rx (0, T)NC(0, T]; L' nL37).
> There exists F € C°(R®; R®) such that

06,0) = o F (\%) .

feC®R®x (0, T)nL(0,T];L' nL®).



The second solution

» We look for a second solution u # u to (NS) with body force f and
u(-,0)=0.

> To build the second solution, we need to choose a special background
profile U.

» Fundamental requirements:

» U should decay sufficiently fast at co,

» Uis an unstable steady state for the (NS) in similarity variables.



Similarity variables

Let u be a solution to (NS) with body force f.

> Change of variables: € = x/V/t, 7 = log(t) € (—o0, T)
il
Vi

(6,0) = 55 F (©)

u(x,t) = Ui, )

» NS in similarity variables: (¢, 7) € R® x (oo, T)

6TU—1§(1+§~V)U—AU+U~VU+VP:F (ssNS)



Instability in (ssNS) generates non-uniqueness

> We think of U as a stationary solutions to (NS) in similarity variables with
body force F

—%(1 e V)U-AU+U-VU+VP=F.

» (Linear) Instability in similarity variables = non-uniqueness.

> Heuristic: U is an unstable steady state if there exists U(¢, ) solving
(ssNS) such that

IUG,7)-UQ) Se™, a>0, TeR,
hence, setting u(x, t) = - U(¢), we have

u(-,t) —a(, )| =o(1), ast—0.



The linearized equation around U

» U= U+ V solves (ssNS) iff

0.V =—PU-VV+ V-VU)+AV+%(1 LEV)V—B(V-VV)
=LV —P(V-VV), (&7)eR®x (-0, T).

where

—,cssvz_%u +&6-VV-AV+PWU-VV+V.VD).

> Functional setting: £y : D(Ls) C L2 — 2 is a closed operator, where

D(Ly) :={Vel?:VecH(RY,¢ VUe PR}



Linear instability

Definition (Linear Instability)
We say that L : D(Ls) C L2 — L2 has an unstable eigenvalue if there exist
> e Cwitha:=Rex >0

> 5 e H*(R%;R®) for any k > 0, with div = 0
such that
Lsn = An.



Linearized (ssNS)

Assume that Lss has an unstable eigenvalue \. Set

U™, 7) =Re(e¥n(€)), R, 7eR.

» U'" solves the linearized (ssNS)
o, U™ = L U™, forany T € R.
»> Exponential growth:

|Ulin(.77_)‘ ~ eRe)vr _ eaT7 reR.



From linear Instability to nonlinear instability
Assume that Lss has an unstable eigenvalue \. Set
U™, ) =Re(e’n(€)), €eR® reR.
Theorem (Nonlinear instability)
Assume that )\ is maximal unstable, i.e.

sup Rez =Rel =a.
z€o(Lss)

Then, there exist T € R and a div-free vector field U™ : R® x (—oo, T) — R®
such that

» Regularity and decay:

IO ()l S €47, 7 < T, k>0

> V.= U4 P solves

0,V =L V—P(V-VV).



From nonlinear instability to non-uniqueness

> U:= U+ U™+ UP solves (ssNS), i.e.

U~ S +EV)U-AU+U-VU+VP=F.

» Recall that
[U| ~1, |U“"(-,r)| ~ef U7 < e, asT— —o0,
hence,

(UG, 7) — OC)| = U™, 7) + U ()| ~ €7, asT — —oo.



From nonlinear instability to non-uniqueness

» We undo similarity variables (ssNS) — (NS)

where ¢ = x//t, T = log(t).

» We need to check that
(@) u#UT

Both (a) and (b) follow from |U(-,7) — U(-)| ~ €% as 7 — —co:

L T NL ar _ a—1/2
\/?|U(5,7-) u(e)| ﬂe t —0.

u(x, t) = U(x, 1) =



Resume

Theorem (Albritton-B.-Colombo '21)
There exist two distinct suitable Leray-Hopf solutions to (NS) with identical
body force f € L} 12 and u(-,0) = &(-,0) = 0.

> Linear instability: There exists U € CZ° such that

L D([«ss) C Li— — L(z,

has a maximal unstable eigenvalue.

unstable trajectory for (ssNS). In standard variables u(x, t) = \lﬁU

> Nonlinear instability: The unstable eigenvalue can be perturbed to U, an
(€
provides a second solution to (NS) with body force f and u(0, -) = 0.



Theorem (Linear instability)

There exists a divergence-free vector field U € C°(R%; R%) s.t.
Lss : D(Lss) C L5(R%R®) — L2(R% R®)

—£“V:—%U+£WUV—AV+MU-VV+V—V@

has a maximal unstable eigenvalue.

Theorem (Nonlinear instability)

Set U'™(¢, 1) = Re(e*"n(¢)). There exist T € R and a div-free vector field
Urr: R® x (—o0, T) — R® such that

» Regularity and decay:

||Uper('77_)HHk 5 eZa‘r’ T<T,k>0

> V.= U™+ UP solves

8,V =L V—P(V-VV).



Nonlinear instability: Heuristic

> We think of (ssNS) as an ODE in the Hilbert space H = [2, i.e.

d
3 UM =b(U(7),
where b : H — H is the velocity field.
> U € His an equilibrium point, i.e.

b(U) =0.

» Under our assumptions, the linearized operator
Db(U) = L,

has an unstable eigenvalue.



We decompose
H=E"xE’xE®°,
where EY, E® and E® are Db(U)-invariant, and
> EYis the collection of unstable directions, i.e o(Db(U)|ev) C {ReX > 0}
> E°is the central manifold, i.e. o(Db(U)|g) C {ReX = 0}
> ES is the collection of stable directions, i.e o(Db(U)|es) C {ReX < 0}
Under our assumption EY # {0}.

Theorem (Unstable Manifold)
Assume H = R? and EY # {0}. There exists a submanifold M" C H s.t.
» TanyM' = EY

> Forany Uy, € M“, it holds
lim U(r)=U

T——00

where U solves
& U(r) =b(U(7))
Uu() = Uy



» Stronger: It builds the entire unstable manifold. We need only one
trajectory.

» Weaker: We need a much quantitative conclusion
»> Exponential decay at 7 = —oc0
> Approximation with the solution to the linearized problem
d _
3, U() = Db(U)[U(7)].
-
Here is where we used maximality.
» Technical point: We need a version of the unstable manifold theorem for

infinite dimensional Hilbert spaces and unbounded vector fields. See for
instance [Henry ’81].



Nonlinear instability: |dea of proof
> Using that U™ 4 UP*" solves the linearized (ssNS) we get
87 Uper _ £ss Uper_P(Ulin.Vuper_FUper'v U]in)_]p( Uper'v Uper)_P(Ulin.V U]in)

» Duhamel’s formula:
Uper — L(Uper) + B(Ljper7 Uper) + G
where
LU)(-, ) :—/ e IESP(U - VUPT 4 UPT - VU)(-, 8) ds
B(U,U)(-,7) =— e""9Ep(U - VU)(-, 5) ds

e(Tfs)C,,P(Ulin . VUhn)(', S) ds



Nonlinear instability: |dea of proof
We need to find a fixed point for the operator

TW)=LU)+BU,U)+G

Proposition (fixed point)
Let N >5/2,a=Re)l eg < 1and T < 0. Set

[Ullx = sup " @ U(:, 7) || s -
T<T
For T small enough 7 : X — X is a contraction.

Key ingredients:
» Growth estimate: V¢é > 0 it holds

€7 [ v < C(5, N) (a+o)r

» Parabolic regularization: V4§ > 0 it holds

1
T L ST
He ||L2~>H1 < C((S, N)me(a+ ) .



Seeking for Linear Instability

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field U € C3°(R?; R®) s.t. the linear
operator Lss : D(Lss) C L2(R3; R?) — L2(R3; R®)

1

fz:ssuzfiu +6-VVWU-AU+PWU-VU+U-VD)

has an unstable eigenvalue.

Definition (Linear Instability)
We say that L : D(Ls) C L2 — L2 has an unstable eigenvalue if there exist
> e Cwitha:=Rex>0

> 5 e H*(R%;R®) for any k > 0, with div = 0
such that
Lsn = An.



Strategy of proof

We appeal to the unstable vortex build in [Vishik *18]. The latter is an unstable
steady state of the 2d-Euler equations with power-law decay at oc.

We aim to lift the unsteble vortex to a 3d-unstable vortex ring with bounded
support.

» Reduction to the Euler equations in standard variables

> Axisymmetric-no-swirl structure and vortex ring construction



Comparison with Jia-Sverak

» Our vortex ring U does not solve exactly (ssNS). It produces a body
force F.

» Our unstable profile decays fast at infinity allowing for technical
simplifications:
»> No need to cut-off the non-unique solutions

> We only need to prove instability, instead of bifurcation scenarios.



2D Instability

2d-vorticity formulation: w(x) = curl u(x), x € R?

Ow + U-Vw = curl f,

> Shear flows: x = (X1, X2) € R?,
u(x) = (b(x2),0),
> Vortices: x € R?, r = |x|,

O(x) = ¢(nx*, a(x) =g(r).



2D Instability

> Linearized Euler equations around a vortex

Orw + ¢(r)dsw + (BS2[w] - €)g'(r) = 0.

» Spectral problem
Lgw = —¢(r)0pw — (BSg[w] - €:)g'(r) .

> Instability: Lsw = Aw where A € C, ReA > 0.

> Rayleigh’s stability criterion: If g’(r) < 0 for all r > 0, then there are no
unstable eigenvalues [Rayleigh '1880].

» Dimensional reduction: the following spaces are Lq-invariant

Uk(R?) = {w € LA(R?) : w = f(r)e™’



2d Instability

The eigenvalue problem Lqw = Aw reduces to the Rayleigh’s stability
equation

2
(%_ﬁ) @(s)—%w(s):o, SER.

» s = log(r), exponential coordinates
> o(s)e*? stream function

> Aand = are functions of g’ and ¢, respectively
> \=—ick

[Tollmien ’34], [Lin *02], [Fadeev '71].



2D Instability: Vishik’s theorem

Set
L2(R?) := (X) Ukm = {m-fold symmetric functions} .

k=1

Theorem (Vishik ’18, ABCDGJK’21)
There exists a smooth decaying vortex
a(x) = ¢(nx=,  a(x) =g(r),

such that L : D(Lst) C L5(R?) — L5,(R?), m > 2, has an unstable
eigenvalue.



Sharpness of Yudovich class

Theorem (Vishik’'18, ABCDGJK’21)

For every p € (2, ), there exist two distinct finite-energy weak solutions u
and u of the 2d-Euler equations with identical body force f such that

> w@ e (L)
> feLll2 andcurlf € L}(L2 N LY).



how to build an unstable 3D-vortex ring

» Step 1: We truncate u to get an unstable, compactly supported vortex

» Step 2:We use the truncate vortex as a radial profile of
3D-Axisymmetric-no-swirl velocity field

» Step 3: We employ spectral perturbative argument to show that the
vortex ring inherits the instability of Vishik’s vortex



What's next

» I'll present details of the construction of the unstable vortex ring

» I'll explain how to build non-uniqueness when Q is a bounded domain, or
a torus (gluing technique)

> I'll present open questions and related problems

Thank you for your attention!



