Instability and non-uniqueness of Leray solutions of the forced Navier-Stokes equations, Part $2{ }^{1}$

Elia Brué

Institute for Advanced Study, Princeton elia.brue@ias.edu

September 12, 2022

[^0]
Main result

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u+\nabla p-\Delta u=f & \tag{NS}\\ \operatorname{div} u=0 & \\ u(\cdot, 0)=u_{0} & \text { on } \mathbb{R}^{3} \times[0, T]\end{cases}
$$

Theorem (Albritton-B.-Colombo '21, '22)
Let Ω be \mathbb{R}^{3}, a smooth bounded domain, or \mathbb{T}^{3}. Then, there exist u and \bar{u}, two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L_{t}^{1} L_{x}^{2}$ and $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$. When Ω is a bounded domain, u and \bar{u} satisfy no-slip boundary conditions and f is supported far away from the boundary.

Strategy of proof when $\Omega=\mathbb{R}^{3}$

Self-similar structure

- There exists a div-free velocity field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.

$$
\begin{gathered}
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{U}\left(\frac{x}{\sqrt{t}}\right) . \\
\bar{u} \in C^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right) \cap C^{0}\left([0, T] ; L^{1} \cap L^{3-}\right) .
\end{gathered}
$$

- There exists $F \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{gathered}
f(x, t)=\frac{1}{t^{3 / 2}} F\left(\frac{x}{\sqrt{t}}\right) . \\
f \in C^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right) \cap L^{1}\left([0, T] ; L^{1} \cap L^{3-}\right) .
\end{gathered}
$$

The second solution

- We look for a second solution $u \neq \bar{u}$ to (NS) with body force f and $u(\cdot, 0)=0$.
- To build the second solution, we need to choose a special background profile \bar{U}.
- Fundamental requirements:
- U should decay sufficiently fast at ∞,
- \bar{U} is an unstable steady state for the (NS) in similarity variables.

Similarity variables

Let u be a solution to (NS) with body force f.

- Change of variables: $\xi=x / \sqrt{t}, \tau=\log (t) \in(-\infty, T)$

$$
\begin{aligned}
& u(x, t)=\frac{1}{\sqrt{t}} U(\xi, \tau) \\
& f(x, t)=\frac{1}{t^{3 / 2}} F(\xi)
\end{aligned}
$$

- NS in similarity variables: $(\xi, \tau) \in \mathbb{R}^{3} \times(-\infty, T)$

$$
\begin{equation*}
\partial_{\tau} U-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+U \cdot \nabla U+\nabla P=F \tag{ssNS}
\end{equation*}
$$

Instability in (ssNS) generates non-uniqueness

- We think of \bar{U} as a stationary solutions to (NS) in similarity variables with body force F

$$
-\frac{1}{2}(1+\xi \cdot \nabla) \bar{U}-\Delta \bar{U}+\bar{U} \cdot \nabla \bar{U}+\nabla P=F .
$$

- (Linear) Instability in similarity variables \Longrightarrow non-uniqueness.
- Heuristic: \bar{U} is an unstable steady state if there exists $U(\xi, \tau)$ solving (ssNS) such that

$$
\|U(\cdot, \tau)-\bar{U}(\cdot)\| \lesssim e^{a \tau}, \quad a>0, \tau \in \mathbb{R}
$$

hence, setting $u(x, t)=\frac{1}{\sqrt{t}} U(\xi)$, we have

$$
\|u(\cdot, t)-\bar{u}(\cdot, t)\|=o(1), \quad \text { as } t \rightarrow 0
$$

The linearized equation around \bar{U}

- $U=\bar{U}+V$ solves (ssNS) iff

$$
\begin{aligned}
\partial_{\tau} V & =-\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})+\Delta V+\frac{1}{2}(1+\xi \cdot \nabla) V-\mathbb{P}(V \cdot \nabla V) \\
& =\mathcal{L}_{s s} V-\mathbb{P}(V \cdot \nabla V), \quad(\xi, \tau) \in \mathbb{R}^{3} \times(-\infty, T) .
\end{aligned}
$$

where

$$
-\mathcal{L}_{\mathrm{ss}} V=-\frac{1}{2}(1+\xi \cdot \nabla) V-\Delta V+\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U}) .
$$

- Functional setting: $\mathcal{L}_{\text {ss }}: D\left(\mathcal{L}_{\text {ss }}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}$ is a closed operator, where

$$
D\left(\mathcal{L}_{\text {ss }}\right):=\left\{V \in L_{\sigma}^{2}: V \in H^{2}\left(\mathbb{R}^{3}\right), \xi \cdot \nabla U \in L^{2}\left(\mathbb{R}^{3}\right)\right\}
$$

Linear instability

Definition (Linear Instability)

We say that $\mathcal{L}_{\mathrm{ss}}: D\left(\mathcal{L}_{\mathrm{ss}}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}$ has an unstable eigenvalue if there exist

- $\lambda \in \mathbb{C}$ with $a:=\operatorname{Re} \lambda>0$
- $\eta \in H^{k}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ for any $k>0$, with div $\eta=0$
such that

$$
\mathcal{L}_{\mathrm{ss}} \eta=\lambda \eta .
$$

Linearized (ssNS)

Assume that $\mathcal{L}_{\text {ss }}$ has an unstable eigenvalue λ. Set

$$
U^{\operatorname{lin}}(\xi, \tau)=\operatorname{Re}\left(e^{\lambda \tau} \eta(\xi)\right), \quad \xi \in \mathbb{R}^{3}, \tau \in \mathbb{R} .
$$

- $U^{\text {lin }}$ solves the linearized (ssNS)

$$
\partial_{\tau} U^{\text {lin }}=\mathcal{L}_{\text {ss }} U^{\text {lin }}, \quad \text { for any } \tau \in \mathbb{R} .
$$

- Exponential growth:

$$
\left|U^{\operatorname{lin}}(\cdot, \tau)\right| \sim e^{\operatorname{Re} \lambda \tau}=e^{a \tau}, \quad \tau \in \mathbb{R} .
$$

From linear Instability to nonlinear instability

Assume that $\mathcal{L}_{\text {ss }}$ has an unstable eigenvalue λ. Set

$$
U^{\operatorname{lin}}(\xi, \tau)=\operatorname{Re}\left(e^{\lambda \tau} \eta(\xi)\right), \quad \xi \in \mathbb{R}^{3}, \tau \in \mathbb{R}
$$

Theorem (Nonlinear instability)
Assume that λ is maximal unstable, i.e.

$$
\sup _{z \in \sigma\left(\mathcal{L}_{\mathrm{ss}}\right)} \operatorname{Re} z=\operatorname{Re} \lambda=a
$$

Then, there exist $T \in \mathbb{R}$ and a div-free vector field $U^{\text {per }}: \mathbb{R}^{3} \times(-\infty, T) \rightarrow \mathbb{R}^{3}$ such that

- Regularity and decay:

$$
\left\|U^{\operatorname{per}}(\cdot, \tau)\right\|_{H^{k}} \lesssim e^{2 a \tau}, \quad \tau \leq T, k \geq 0
$$

- $V:=U^{\text {lin }}+U^{\text {per }}$ solves

$$
\partial_{\tau} V=\mathcal{L}_{\mathrm{ss}} V-\mathbb{P}(V \cdot \nabla V)
$$

From nonlinear instability to non-uniqueness

- $U:=\bar{U}+U^{\text {lin }}+U^{\text {per }}$ solves (ssNS), i.e.

$$
\partial_{\tau} U-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+U \cdot \nabla U+\nabla P=F .
$$

- Recall that

$$
|\bar{U}(\cdot)| \sim 1, \quad\left|U^{\operatorname{lin}}(\cdot, \tau)\right| \sim e^{a \tau}, \quad\left|U^{\operatorname{per}}(\cdot, \tau)\right| \lesssim e^{2 a \tau}, \quad \text { as } \tau \rightarrow-\infty,
$$

hence,

$$
|U(\cdot, \tau)-\bar{U}(\cdot)|=\left|U^{\operatorname{lin}}(\cdot, \tau)+U^{\operatorname{per}}(\cdot, \tau)\right| \sim e^{a \tau}, \quad \text { as } \tau \rightarrow-\infty .
$$

From nonlinear instability to non-uniqueness

- We undo similarity variables (ssNS) \rightarrow (NS)

$$
\begin{aligned}
& \bar{u}(x, \cdot)=\frac{1}{\sqrt{t}} \bar{U}(\xi), \\
& u(x, t)=\frac{1}{\sqrt{t}} U(\xi, \tau)
\end{aligned}
$$

where $\xi=x / \sqrt{t}, \tau=\log (t)$.

- We need to check that
(a) $u \neq \bar{u}$
(b) $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$

Both (a) and (b) follow from $|U(\cdot, \tau)-\bar{U}(\cdot)| \sim e^{a \tau}$ as $\tau \rightarrow-\infty$:

$$
|u(x, t)-\bar{u}(x, t)|=\frac{1}{\sqrt{t}}|U(\xi, \tau)-\bar{U}(\xi)| \sim \frac{1}{\sqrt{t}} e^{a \tau}=t^{a-1 / 2} \rightarrow 0
$$

Resume

Theorem (Albritton-B.-Colombo '21)

There exist two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L_{t}^{1} L_{x}^{2}$ and $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$.

- Linear instability: There exists $\bar{U} \in C_{c}^{\infty}$ such that

$$
\mathcal{L}_{\mathrm{ss}}: D\left(\mathcal{L}_{\mathrm{ss}}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}
$$

has a maximal unstable eigenvalue.

- Nonlinear instability: The unstable eigenvalue can be perturbed to \bar{U}, an unstable trajectory for (ssNS). In standard variables $u(x, t)=\frac{1}{\sqrt{t}} U(\xi)$ provides a second solution to (NS) with body force f and $u(0, \cdot)=0$.

Theorem (Linear instability)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.
$\mathcal{L}_{s s}: D\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\text {ss }} V=-\frac{1}{2}(1+\xi \cdot \nabla) V-\Delta V+\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})
$$

has a maximal unstable eigenvalue.

Theorem (Nonlinear instability)
Set $U^{\text {lin }}(\xi, \tau)=\operatorname{Re}\left(e^{\lambda \tau} \eta(\xi)\right)$. There exist $T \in \mathbb{R}$ and a div-free vector field $U^{\text {per }}: \mathbb{R}^{3} \times(-\infty, T) \rightarrow \mathbb{R}^{3}$ such that

- Regularity and decay:

$$
\left\|U^{\operatorname{per}}(\cdot, \tau)\right\|_{H^{k}} \lesssim e^{2 a \tau}, \quad \tau \leq T, k \geq 0
$$

- $V:=U^{\text {lin }}+U^{\text {per }}$ solves

$$
\partial_{\tau} V=\mathcal{L}_{\mathrm{ss}} V-\mathbb{P}(V \cdot \nabla V) .
$$

Nonlinear instability: Heuristic

- We think of (ssNS) as an ODE in the Hilbert space $H=L_{\sigma}^{2}$, i.e.

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} U(\tau)=\mathbf{b}(U(\tau))
$$

where $\mathbf{b}: H \rightarrow H$ is the velocity field.

- $\bar{U} \in H$ is an equilibrium point, i.e.

$$
\mathbf{b}(\bar{U})=0 .
$$

- Under our assumptions, the linearized operator

$$
D \mathbf{b}(\bar{U})=\mathcal{L}_{\mathrm{ss}},
$$

has an unstable eigenvalue.

We decompose

$$
H=E^{u} \times E^{0} \times E^{s},
$$

where E^{u}, E^{0} and E^{s} are $D \mathbf{b}(\bar{U})$-invariant, and

- E^{u} is the collection of unstable directions, i.e $\sigma\left(\left.D \mathbf{b}(\bar{U})\right|_{E^{u}}\right) \subset\{\operatorname{Re} \lambda>0\}$
- E^{0} is the central manifold, i.e. $\sigma\left(\left.D \mathbf{b}(\bar{U})\right|_{E^{0}}\right) \subset\{\operatorname{Re} \lambda=0\}$
- E^{s} is the collection of stable directions, i.e $\sigma\left(\left.D \mathbf{b}(\bar{U})\right|_{E^{s}}\right) \subset\{\operatorname{Re} \lambda<0\}$ Under our assumption $E^{u} \neq\{0\}$.

Theorem (Unstable Manifold)
Assume $H=\mathbb{R}^{d}$ and $E^{u} \neq\{0\}$. There exists a submanifold $M^{u} \subset H$ s.t.

- $\operatorname{Tan}_{\bar{U}} M^{u}=E^{u}$
- For any $U_{0} \in M^{u}$, it holds

$$
\lim _{\tau \rightarrow-\infty} U(\tau)=\bar{U}
$$

where U solves

$$
\left\{\begin{array}{l}
\frac{d}{d \tau} U(\tau)=\mathbf{b}(U(\tau)) \\
U(0)=U_{0}
\end{array}\right.
$$

- Stronger: It builds the entire unstable manifold. We need only one trajectory.
- Weaker: We need a much quantitative conclusion
- Exponential decay at $\tau=-\infty$
- Approximation with the solution to the linearized problem

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} U(\tau)=D \mathbf{b}(\bar{U})[U(\tau)] .
$$

Here is where we used maximality.

- Technical point: We need a version of the unstable manifold theorem for infinite dimensional Hilbert spaces and unbounded vector fields. See for instance [Henry '81].

Nonlinear instability: Idea of proof

- Using that $U^{\text {lin }}+U^{\text {per }}$ solves the linearized (ssNS) we get

$$
\partial_{\tau} U^{\text {per }}=\mathcal{L}_{\text {ss }} U^{\text {per }}-\mathbb{P}\left(U^{\text {lin }} \cdot \nabla U^{\text {per }}+U^{\text {per }} \cdot \nabla U^{\text {lin }}\right)-\mathbb{P}\left(U^{\text {per }} \cdot \nabla U^{\text {per }}\right)-\mathbb{P}\left(U^{\text {lin }} \cdot \nabla U^{\text {lin }}\right)
$$

- Duhamel's formula:

$$
U^{\text {per }}=L\left(U^{\text {per }}\right)+B\left(U^{\text {per }}, U^{\text {per }}\right)+G
$$

where

$$
\begin{aligned}
L(U)(\cdot, \tau) & =-\int_{-\infty}^{\tau} e^{(\tau-s) \mathcal{L s}_{\text {s }}} \mathbb{P}\left(U \cdot \nabla U^{\text {per }}+U^{\text {per }} \cdot \nabla U\right)(\cdot, s) d s \\
B(U, U)(\cdot, \tau) & =-\int_{-\infty}^{\tau} e^{(\tau-s) \mathcal{L s s} P}(U \cdot \nabla U)(\cdot, s) d s \\
G(\cdot, \tau) & =-\int_{-\infty}^{\tau} e^{(\tau-s) \mathcal{L s}_{\text {ss }}} \mathbb{P}\left(U^{\text {lin }} \cdot \nabla U^{\text {lin }}\right)(\cdot, s) d s
\end{aligned}
$$

Nonlinear instability: Idea of proof

We need to find a fixed point for the operator

$$
\mathcal{T}(U)=L(U)+B(U, U)+G
$$

Proposition (fixed point)
Let $N>5 / 2, a=\operatorname{Re} \lambda, \varepsilon_{0} \ll 1$ and $T<0$. Set

$$
\|U\|_{x}=\sup _{\tau \leq T} e^{-\tau\left(a+\varepsilon_{0}\right)}\|U(\cdot, \tau)\|_{H^{N}\left(\mathbb{R}^{3}\right)}
$$

For T small enough $\mathcal{T}: X \rightarrow X$ is a contraction.

Key ingredients:

- Growth estimate: $\forall \delta>0$ it holds

$$
\left\|e^{\tau \mathcal{L}_{\mathrm{ss}}}\right\|_{H^{N} \rightarrow H^{N}} \leq C(\delta, N) e^{(a+\delta) \tau}
$$

- Parabolic regularization: $\forall \delta>0$ it holds

$$
\left\|e^{\tau \mathcal{L}_{\mathrm{ss}}}\right\|_{L^{2} \rightarrow H^{1}} \leq C(\delta, N) \frac{1}{\tau^{1 / 2}} e^{(a+\delta) \tau}
$$

Seeking for Linear Instability

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: D\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\text {ss }} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

has an unstable eigenvalue.

Definition (Linear Instability)
We say that $\mathcal{L}_{\mathrm{ss}}: D\left(\mathcal{L}_{\mathrm{ss}}\right) \subset L_{\sigma}^{2} \rightarrow L_{\sigma}^{2}$ has an unstable eigenvalue if there exist

- $\lambda \in \mathbb{C}$ with $a:=\operatorname{Re} \lambda>0$
- $\eta \in H^{k}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ for any $k>0$, with div $\eta=0$
such that

$$
\mathcal{L}_{\mathrm{ss}} \eta=\lambda \eta .
$$

Strategy of proof

We appeal to the unstable vortex build in [Vishik '18]. The latter is an unstable steady state of the $2 d$-Euler equations with power-law decay at ∞.

We aim to lift the unsteble vortex to a $3 d$-unstable vortex ring with bounded support.

- Reduction to the Euler equations in standard variables
- Axisymmetric-no-swirl structure and vortex ring construction

Comparison with Jia-Sverak

- Our vortex ring \bar{U} does not solve exactly (ssNS). It produces a body force F.
- Our unstable profile decays fast at infinity allowing for technical simplifications:
- No need to cut-off the non-unique solutions
- We only need to prove instability, instead of bifurcation scenarios.

2D Instability

2d-vorticity formulation: $\omega(x)=\operatorname{curl} u(x), x \in \mathbb{R}^{2}$

$$
\partial_{t} \omega+u \cdot \nabla \omega=\operatorname{curl} f
$$

- Shear flows: $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\bar{u}(x)=\left(b\left(x_{2}\right), 0\right),
$$

- Vortices: $x \in \mathbb{R}^{2}, r=|x|$,

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r) .
$$

2D Instability

- Linearized Euler equations around a vortex

$$
\partial_{t} \omega+\zeta(r) \partial_{\theta} \omega+\left(\mathrm{BS}_{2}[\omega] \cdot e_{r}\right) g^{\prime}(r)=0
$$

- Spectral problem

$$
\mathcal{L}_{\mathrm{st}} \omega=-\zeta(r) \partial_{\theta} \omega-\left(\mathrm{BS}_{2}[\omega] \cdot e_{r}\right) g^{\prime}(r)
$$

- Instability: $\mathcal{L}_{\text {st }} \omega=\lambda \omega$ where $\lambda \in \mathbb{C}, \operatorname{Re} \lambda>0$.
- Rayleigh's stability criterion: If $g^{\prime}(r)<0$ for all $r>0$, then there are no unstable eigenvalues [Rayleigh '1880].
- Dimensional reduction: the following spaces are $\mathcal{L}_{\mathrm{st}}$-invariant

$$
U_{k}\left(\mathbb{R}^{2}\right)=\left\{\omega \in L^{2}\left(\mathbb{R}^{2}\right): \omega=f(r) e^{i k \theta}\right\}
$$

2d Instability

The eigenvalue problem $\mathcal{L}_{\text {st }} \omega=\lambda \omega$ reduces to the Rayleigh's stability equation

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{ds} s^{2}}-k^{2}\right) \varphi(s)-\frac{A(s)}{\equiv(s)-c} \varphi(s)=0, \quad s \in \mathbb{R} .
$$

- $s=\log (r)$, exponential coordinates
- $\varphi(s) e^{i k \theta}$ stream function
- A and \equiv are functions of g^{\prime} and ζ, respectively
- $\lambda=-i c k$
[Tollmien '34], [Lin '02], [Fadeev '71].

2D Instability: Vishik's theorem

Set

$$
L_{m}^{2}\left(\mathbb{R}^{2}\right):=\bigotimes_{k=1}^{\infty} U_{k m}=\{m \text {-fold symmetric functions }\} .
$$

Theorem (Vishik '18, ABCDGJK'21)
There exists a smooth decaying vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r),
$$

such that $\mathcal{L}_{s t}: D\left(\mathcal{L}_{s t}\right) \subset L_{m}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{m}^{2}\left(\mathbb{R}^{2}\right), m \geq 2$, has an unstable eigenvalue.

Sharpness of Yudovich class

Theorem (Vishik'18, ABCDGJK'21)
For every $p \in(2, \infty)$, there exist two distinct finite-energy weak solutions u and \bar{u} of the $2 d$-Euler equations with identical body force f such that

- $\omega, \bar{\omega} \in L_{t}^{\infty}\left(L_{x}^{p} \cap L_{x}^{1}\right)$;
- $f \in L_{t}^{1} L_{x}^{2}$ and curl $f \in L_{t}^{1}\left(L_{x}^{p} \cap L_{x}^{1}\right)$.

how to build an unstable 3D-vortex ring

- Step 1: We truncate \bar{u} to get an unstable, compactly supported vortex
- Step 2:We use the truncate vortex as a radial profile of 3D-Axisymmetric-no-swirl velocity field
- Step 3: We employ spectral perturbative argument to show that the vortex ring inherits the instability of Vishik's vortex

What's next

- I'll present details of the construction of the unstable vortex ring
- I'll explain how to build non-uniqueness when Ω is a bounded domain, or a torus (gluing technique)
- I'll present open questions and related problems

Thank you for your attention!

[^0]: ${ }^{1}$ Joint with D. Albritton and M. Colombo

