Instability and non-uniqueness of Leray solutions of the forced Navier-Stokes equations, Part 2 ¹

Elia Brué

Institute for Advanced Study, Princeton elia.brue@ias.edu

September 12, 2022

¹Joint with D. Albritton and M. Colombo

Main result

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla p - \Delta u = f \\ \operatorname{div} u = 0 & \text{on } \mathbb{R}^3 \times [0, T] \\ u(\cdot, 0) = u_0 \end{cases}$$
(NS)

Theorem (Albritton-B.-Colombo '21, '22)

Let Ω be \mathbb{R}^3 , a smooth bounded domain, or \mathbb{T}^3 . Then, there exist u and \overline{u} , two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L^1_t L^2_x$ and $u(\cdot, 0) = \overline{u}(\cdot, 0) = 0$. When Ω is a bounded domain, u and \overline{u} satisfy no-slip boundary conditions and f is supported far away from the boundary.

Strategy of proof when $\Omega=\mathbb{R}^3$

Self-similar structure

• There exists a div-free velocity field $\overline{U} \in C_c^{\infty}(\mathbb{R}^3; \mathbb{R}^3)$ s.t.

$$\bar{u}(x,t) = \frac{1}{\sqrt{t}}\bar{U}\left(\frac{x}{\sqrt{t}}\right)$$

 $\overline{u} \in C^{\infty}(\mathbb{R}^3 \times (0, T)) \cap C^0([0, T]; L^1 \cap L^{3-}).$

• There exists $F \in C_c^{\infty}(\mathbb{R}^3; \mathbb{R}^3)$ such that

$$f(x,t) = \frac{1}{t^{3/2}} F\left(\frac{x}{\sqrt{t}}\right) .$$
$$f \in C^{\infty}(\mathbb{R}^3 \times (0,T)) \cap L^1([0,T]; L^1 \cap L^{3-})$$

The second solution

- ▶ We look for a second solution $u \neq \overline{u}$ to (NS) with body force *f* and $u(\cdot, 0) = 0$.
- To build the second solution, we need to choose a special background profile \bar{U} .
- Fundamental requirements:
 - \overline{U} should decay sufficiently fast at ∞ ,
 - \overline{U} is an unstable steady state for the (NS) in similarity variables.

Similarity variables

Let u be a solution to (NS) with body force f.

• Change of variables: $\xi = x/\sqrt{t}$, $\tau = \log(t) \in (-\infty, T)$

$$u(x,t) = \frac{1}{\sqrt{t}}U(\xi,\tau)$$
$$f(x,t) = \frac{1}{t^{3/2}}F(\xi)$$

▶ NS in similarity variables: $(\xi, \tau) \in \mathbb{R}^3 \times (-\infty, T)$

$$\partial_{\tau}U - \frac{1}{2}(1 + \xi \cdot \nabla)U - \Delta U + U \cdot \nabla U + \nabla P = F$$
 (ssNS)

Instability in (ssNS) generates non-uniqueness

We think of U
 as a stationary solutions to (NS) in similarity variables with body force F

$$-\frac{1}{2}(1+\xi\cdot\nabla)\bar{U}-\Delta\bar{U}+\bar{U}\cdot\nabla\bar{U}+\nabla P=F.$$

- (Linear) Instability in similarity variables \implies non-uniqueness.
- Heuristic: Ū is an unstable steady state if there exists U(ξ, τ) solving (ssNS) such that

$$\| oldsymbol{U}(\cdot, au) - oldsymbol{ar{U}}(\cdot) \| \lesssim oldsymbol{e}^{a au}\,, \quad oldsymbol{a} > oldsymbol{0}\,, \ au \in \mathbb{R}\,,$$

hence, setting $u(x, t) = \frac{1}{\sqrt{t}}U(\xi)$, we have

$$\|u(\cdot,t)-\bar{u}(\cdot,t)\|=o(1)\,,\quad \text{as }t
ightarrow 0\,.$$

The linearized equation around \bar{U}

►
$$U = \overline{U} + V$$
 solves (ssNS) iff
 $\partial_{\tau} V = -\mathbb{P}(\overline{U} \cdot \nabla V + V \cdot \nabla \overline{U}) + \Delta V + \frac{1}{2}(1 + \xi \cdot \nabla)V - \mathbb{P}(V \cdot \nabla V)$
 $= \mathcal{L}_{ss}V - \mathbb{P}(V \cdot \nabla V), \qquad (\xi, \tau) \in \mathbb{R}^{3} \times (-\infty, T).$

where

$$-\mathcal{L}_{\rm ss}V = -\frac{1}{2}(1+\xi\cdot\nabla)V - \Delta V + \mathbb{P}(\bar{U}\cdot\nabla V + V\cdot\nabla\bar{U}).$$

► Functional setting: $\mathcal{L}_{ss} : D(\mathcal{L}_{ss}) \subset L^2_{\sigma} \to L^2_{\sigma}$ is a closed operator, where $D(\mathcal{L}_{ss}) := \{ V \in L^2_{\sigma} : V \in H^2(\mathbb{R}^3), \xi \cdot \nabla U \in L^2(\mathbb{R}^3) \}$

Linear instability

Definition (Linear Instability)

We say that $\mathcal{L}_{ss}: D(\mathcal{L}_{ss}) \subset L^2_{\sigma} \to L^2_{\sigma}$ has an unstable eigenvalue if there exist

• $\lambda \in \mathbb{C}$ with $a := \operatorname{Re} \lambda > 0$

•
$$\eta \in H^k(\mathbb{R}^3; \mathbb{R}^3)$$
 for any $k > 0$, with div $\eta = 0$ such that

$$\mathcal{L}_{ss}\eta = \lambda\eta$$
.

Linearized (ssNS)

Assume that \mathcal{L}_{ss} has an unstable eigenvalue λ . Set

$$U^{\mathrm{lin}}(\xi, au) = \mathrm{Re}(\boldsymbol{e}^{\lambda au}\eta(\xi))\,,\quad \xi\in\mathbb{R}^3\,, au\in\mathbb{R}\,.$$

► U^{lin} solves the linearized (ssNS)

$$\partial_{ au} \mathcal{U}^{ ext{lin}} = \mathcal{L}_{ ext{ss}} \mathcal{U}^{ ext{lin}} \,, \quad ext{for any } au \in \mathbb{R} \,.$$

Exponential growth:

$$|oldsymbol{U}^{ ext{lin}}(\cdot, au)|\simoldsymbol{e}^{ ext{Re}\lambda au}=oldsymbol{e}^{oldsymbol{a} au}\,,\quad au\in\mathbb{R}\,,$$

From linear Instability to nonlinear instability

Assume that \mathcal{L}_{ss} has an unstable eigenvalue λ . Set

$$U^{\mathrm{lin}}(\xi, au)=\mathrm{Re}(oldsymbol{e}^{\lambda au}\eta(\xi))\,,\quad \xi\in\mathbb{R}^3\,, au\in\mathbb{R}\,.$$

Theorem (Nonlinear instability)

Assume that λ is maximal unstable, i.e.

$$\sup_{z\in\sigma(\mathcal{L}_{ss})}\operatorname{Re} z=\operatorname{Re} \lambda=a.$$

Then, there exist $T \in \mathbb{R}$ and a div-free vector field $U^{per} : \mathbb{R}^3 \times (-\infty, T) \to \mathbb{R}^3$ such that

Regularity and decay:

$$\| oldsymbol{U}^{ ext{per}}(\cdot, au) \|_{H^k} \lesssim oldsymbol{e}^{2a au}\,, \quad au \leq oldsymbol{T}, \, k \geq 0$$

 \blacktriangleright V := U^{lin} + U^{per} solves

$$\partial_{\tau} V = \mathcal{L}_{\mathrm{ss}} V - \mathbb{P}(V \cdot \nabla V).$$

From nonlinear instability to non-uniqueness

►
$$U := \overline{U} + U^{\text{lin}} + U^{\text{per}}$$
 solves (ssNS), i.e.
 $\partial_{\tau} U - \frac{1}{2} (1 + \xi \cdot \nabla) U - \Delta U + U \cdot \nabla U + \nabla P = F.$

Recall that

$$|\bar{U}(\cdot)| \sim 1$$
, $|U^{\text{lin}}(\cdot, \tau)| \sim e^{a\tau}$, $|U^{\text{per}}(\cdot, \tau)| \lesssim e^{2a\tau}$, as $\tau \to -\infty$, hence,

$$|U(\cdot, \tau) - \overline{U}(\cdot)| = |U^{\text{lin}}(\cdot, \tau) + U^{\text{per}}(\cdot, \tau)| \sim e^{a\tau}, \quad \text{as } \tau \to -\infty.$$

From nonlinear instability to non-uniqueness

• We undo similarity variables $(ssNS) \rightarrow (NS)$

$$\bar{u}(x,\cdot) = \frac{1}{\sqrt{t}}\bar{U}(\xi),$$
$$u(x,t) = \frac{1}{\sqrt{t}}U(\xi,\tau),$$

where
$$\xi = x/\sqrt{t}$$
, $\tau = \log(t)$.

We need to check that

(a) $u \neq \overline{u}$

(b) $u(\cdot, 0) = \bar{u}(\cdot, 0) = 0$

Both (a) and (b) follow from $|U(\cdot, \tau) - \overline{U}(\cdot)| \sim e^{a\tau}$ as $\tau \to -\infty$:

$$|u(x,t) - \bar{u}(x,t)| = \frac{1}{\sqrt{t}}|U(\xi,\tau) - \bar{U}(\xi)| \sim \frac{1}{\sqrt{t}}e^{a\tau} = t^{a-1/2} \to 0$$

Resume

Theorem (Albritton-B.-Colombo '21)

There exist two distinct suitable Leray-Hopf solutions to (NS) with identical body force $f \in L^1_t L^2_x$ and $u(\cdot, 0) = \bar{u}(\cdot, 0) = 0$.

• Linear instability: There exists $\bar{U} \in C_c^{\infty}$ such that

$$\mathcal{L}_{\mathrm{ss}}: \mathcal{D}(\mathcal{L}_{\mathrm{ss}}) \subset L^2_\sigma \to L^2_\sigma$$

has a maximal unstable eigenvalue.

▶ Nonlinear instability: The unstable eigenvalue can be perturbed to \overline{U} , an unstable trajectory for (ssNS). In standard variables $u(x, t) = \frac{1}{\sqrt{t}}U(\xi)$ provides a second solution to (NS) with body force *f* and $u(0, \cdot) = 0$.

Theorem (Linear instability)

There exists a divergence-free vector field $\overline{U} \in C_c^{\infty}(\mathbb{R}^3; \mathbb{R}^3)$ s.t. $\mathcal{L}_{ss} : D(\mathcal{L}_{ss}) \subset L^2_{\sigma}(\mathbb{R}^3; \mathbb{R}^3) \to L^2_{\sigma}(\mathbb{R}^3; \mathbb{R}^3)$

$$-\mathcal{L}_{ss}V = -\frac{1}{2}(1+\xi\cdot\nabla)V - \Delta V + \mathbb{P}(\bar{U}\cdot\nabla V + V\cdot\nabla\bar{U})$$

has a maximal unstable eigenvalue.

Theorem (Nonlinear instability)

Set $U^{\text{lin}}(\xi, \tau) = \text{Re}(e^{\lambda \tau} \eta(\xi))$. There exist $T \in \mathbb{R}$ and a div-free vector field $U^{\text{per}} : \mathbb{R}^3 \times (-\infty, T) \to \mathbb{R}^3$ such that

Regularity and decay:

$$\| \textit{U}^{ ext{per}}(\cdot, au) \|_{\textit{H}^{k}} \lesssim \textit{e}^{\textit{2a} au} \,, \quad au \leq \textit{T}, \, k \geq 0$$

 $\blacktriangleright V := U^{\rm lin} + U^{\rm per} \ solves$

$$\partial_{\tau} V = \mathcal{L}_{\rm ss} V - \mathbb{P}(V \cdot \nabla V).$$

Nonlinear instability: Heuristic

• We think of (ssNS) as an ODE in the Hilbert space $H = L_{\sigma}^2$, i.e.

$$\frac{\mathrm{d}}{\mathrm{d}\tau} U(\tau) = \mathbf{b}(U(\tau))\,,$$

where $\mathbf{b}: H \to H$ is the velocity field.

• $\overline{U} \in H$ is an equilibrium point, i.e.

$$\mathbf{b}(\bar{U}) = 0$$
.

Under our assumptions, the linearized operator

$$D\mathbf{b}(\bar{U}) = \mathcal{L}_{\mathrm{ss}}$$
,

has an unstable eigenvalue.

We decompose

$$H=E^{u}\times E^{0}\times E^{s},$$

where E^{u} , E^{0} and E^{s} are $D\mathbf{b}(\bar{U})$ -invariant, and

- ► E^u is the collection of unstable directions, i.e $\sigma(D\mathbf{b}(\bar{U})|_{E^u}) \subset {\operatorname{Re}\lambda > 0}$
- ▶ E^0 is the central manifold, i.e. $\sigma(D\mathbf{b}(\overline{U})|_{E^0}) \subset {\operatorname{Re}\lambda = 0}$

• E^s is the collection of stable directions, i.e $\sigma(D\mathbf{b}(\bar{U})|_{E^s}) \subset {\operatorname{Re}\lambda < 0}$ Under our assumption $E^u \neq {0}$.

Theorem (Unstable Manifold)

Assume $H = \mathbb{R}^d$ and $E^u \neq \{0\}$. There exists a submanifold $M^u \subset H$ s.t.

► $\operatorname{Tan}_{\bar{U}}M^u = E^u$

For any $U_0 \in M^u$, it holds

$$\lim_{\tau\to-\infty} U(\tau) = \bar{U}$$

where U solves

$$\left\{egin{array}{l} rac{\mathrm{d}}{\mathrm{d} au} U(au) = \mathbf{b}(U(au)) \ U(0) = U_0 \end{array}
ight.$$

- Stronger: It builds the entire unstable manifold. We need only one trajectory.
- Weaker: We need a much quantitative conclusion
 - Exponential decay at $\tau = -\infty$
 - Approximation with the solution to the linearized problem

$$\frac{\mathrm{d}}{\mathrm{d}\tau} U(\tau) = D \mathbf{b}(\bar{U})[U(\tau)] \,.$$

Here is where we used maximality.

Technical point: We need a version of the unstable manifold theorem for infinite dimensional Hilbert spaces and unbounded vector fields. See for instance [Henry '81].

Nonlinear instability: Idea of proof

• Using that $U^{\text{lin}} + U^{\text{per}}$ solves the linearized (ssNS) we get

$$\partial_{\tau} U^{\text{per}} = \mathcal{L}_{\text{ss}} U^{\text{per}} - \mathbb{P}(U^{\text{lin}} \cdot \nabla U^{\text{per}} + U^{\text{per}} \cdot \nabla U^{\text{lin}}) - \mathbb{P}(U^{\text{per}} \cdot \nabla U^{\text{per}}) - \mathbb{P}(U^{\text{lin}} \cdot \nabla U^{\text{lin}})$$

Duhamel's formula:

$$U^{\rm per} = L(U^{\rm per}) + B(U^{\rm per}, U^{\rm per}) + G$$

where

$$egin{aligned} \mathcal{L}(\mathcal{U})(\cdot, au) &= -\int_{-\infty}^{ au} e^{(au-s)\mathcal{L}_{\mathrm{ss}}} \mathbb{P}(\mathcal{U}\cdot
abla \mathcal{U}^{\mathrm{per}} + \mathcal{U}^{\mathrm{per}} \cdot
abla \mathcal{U})(\cdot,s) \, ds \ & \mathcal{B}(\mathcal{U},\mathcal{U})(\cdot, au) &= -\int_{-\infty}^{ au} e^{(au-s)\mathcal{L}_{\mathrm{ss}}} \mathbb{P}(\mathcal{U}\cdot
abla \mathcal{U})(\cdot,s) \, ds \ & \mathcal{G}(\cdot, au) &= -\int_{-\infty}^{ au} e^{(au-s)\mathcal{L}_{\mathrm{ss}}} \mathbb{P}(\mathcal{U}^{\mathrm{lin}} \cdot
abla \mathcal{U}^{\mathrm{lin}})(\cdot,s) \, ds \end{aligned}$$

Nonlinear instability: Idea of proof

We need to find a fixed point for the operator

 $\mathcal{T}(U) = L(U) + B(U, U) + G$

Proposition (fixed point)

Let N > 5/2, $a = \text{Re}\lambda$, $\varepsilon_0 \ll 1$ and T < 0. Set

$$\|U\|_{X} = \sup_{\tau \leq T} e^{-\tau(a+\varepsilon_0)} \|U(\cdot,\tau)\|_{H^{N}(\mathbb{R}^3)}.$$

For *T* small enough $\mathcal{T} : X \to X$ is a contraction.

Key ingredients:

• Growth estimate: $\forall \delta > 0$ it holds

$$\|e^{ au\mathcal{L}_{\mathrm{ss}}}\|_{H^{N} o H^{N}} \leq C(\delta, N)e^{(a+\delta) au}$$

▶ Parabolic regularization: $\forall \delta > 0$ it holds

$$\|e^{ au\mathcal{L}_{\mathrm{ss}}}\|_{L^2 o H^1} \leq C(\delta, N) rac{1}{ au^{1/2}} e^{(a+\delta) au}$$

Seeking for Linear Instability

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field $\overline{U} \in C_c^{\infty}(\mathbb{R}^3; \mathbb{R}^3)$ s.t. the linear operator $\mathcal{L}_{ss} : D(\mathcal{L}_{ss}) \subset L^2_{\sigma}(\mathbb{R}^3; \mathbb{R}^3) \to L^2_{\sigma}(\mathbb{R}^3; \mathbb{R}^3)$

$$-\mathcal{L}_{ss}U = -\frac{1}{2}(1 + \xi \cdot \nabla)U - \Delta U + \mathbb{P}(\overline{U} \cdot \nabla U + U \cdot \nabla \overline{U})$$

has an unstable eigenvalue.

Definition (Linear Instability)

We say that $\mathcal{L}_{ss} : D(\mathcal{L}_{ss}) \subset L^2_{\sigma} \to L^2_{\sigma}$ has an unstable eigenvalue if there exist

• $\lambda \in \mathbb{C}$ with $a := \operatorname{Re} \lambda > 0$

• $\eta \in H^k(\mathbb{R}^3; \mathbb{R}^3)$ for any k > 0, with div $\eta = 0$ such that

$$\mathcal{L}_{\rm ss}\eta = \lambda\eta$$
.

We appeal to the unstable vortex build in [Vishik '18]. The latter is an unstable steady state of the 2*d*-Euler equations with power-law decay at ∞ .

We aim to lift the unsteble vortex to a 3*d*-unstable vortex ring with bounded support.

- Reduction to the Euler equations in standard variables
- Axisymmetric-no-swirl structure and vortex ring construction

Comparison with Jia-Sverak

- Our vortex ring U

 does not solve exactly (ssNS). It produces a body force F.
- Our unstable profile decays fast at infinity allowing for technical simplifications:
 - No need to cut-off the non-unique solutions
 - We only need to prove instability, instead of bifurcation scenarios.

2D Instability

2d-vorticity formulation: $\omega(x) = \operatorname{curl} u(x), x \in \mathbb{R}^2$

$$\partial_t \omega + \boldsymbol{u} \cdot \nabla \omega = \operatorname{curl} \boldsymbol{f},$$

Shear flows: $x = (x_1, x_2) \in \mathbb{R}^2$,

 $\bar{u}(x)=\left(b(x_2),0\right),$

► Vortices: $x \in \mathbb{R}^2$, r = |x|,

$$\overline{u}(x) = \zeta(r)x^{\perp}, \quad \overline{\omega}(x) = g(r).$$

2D Instability

Linearized Euler equations around a vortex

$$\partial_t \omega + \zeta(r) \partial_\theta \omega + (\mathrm{BS}_2[\omega] \cdot e_r) g'(r) = 0.$$

Spectral problem

$$\mathcal{L}_{\mathrm{st}}\omega = -\zeta(r)\partial_{ heta}\omega - (\mathrm{BS}_2[\omega]\cdot e_r)g'(r)$$
 .

- Instability: $\mathcal{L}_{st}\omega = \lambda \omega$ where $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda > 0$.
- Rayleigh's stability criterion: If g'(r) < 0 for all r > 0, then there are no unstable eigenvalues [Rayleigh '1880].
- **Dimensional reduction:** the following spaces are \mathcal{L}_{st} -invariant

$$U_k(\mathbb{R}^2) = \{ \omega \in L^2(\mathbb{R}^2) : \omega = f(r)e^{ik\theta} \}.$$

2d Instability

The eigenvalue problem $\mathcal{L}_{st}\omega=\lambda\omega$ reduces to the Rayleigh's stability equation

$$\left(rac{\mathrm{d}^2}{\mathrm{d}s^2}-k^2
ight)arphi(s)-rac{A(s)}{\Xi(s)-c}arphi(s)=0\,,\quad s\in\mathbb{R}\,.$$

• $s = \log(r)$, exponential coordinates

- $\varphi(s)e^{ik\theta}$ stream function
- A and \equiv are functions of g' and ζ , respectively
- $\blacktriangleright \lambda = -ick$

[Tollmien '34], [Lin '02], [Fadeev '71].

2D Instability: Vishik's theorem

Set

$$L^2_m(\mathbb{R}^2) := \bigotimes_{k=1}^\infty U_{km} = \{m \text{-fold symmetric functions}\}.$$

Theorem (Vishik '18, ABCDGJK'21)

There exists a smooth decaying vortex

$$\bar{u}(x) = \zeta(r)x^{\perp}, \qquad \bar{\omega}(x) = g(r),$$

such that \mathcal{L}_{st} : $D(\mathcal{L}_{st}) \subset L^2_m(\mathbb{R}^2) \to L^2_m(\mathbb{R}^2)$, $m \ge 2$, has an unstable eigenvalue.

Theorem (Vishik'18, ABCDGJK'21)

For every $p \in (2, \infty)$, there exist two distinct finite-energy weak solutions u and \bar{u} of the 2d-Euler equations with identical body force f such that

$$\blacktriangleright \ \omega, \bar{\omega} \in L^{\infty}_t(L^p_x \cap L^1_x);$$

•
$$f \in L^1_t L^2_x$$
 and $\operatorname{curl} f \in L^1_t (L^p_x \cap L^1_x)$.

how to build an unstable 3D-vortex ring

- Step 1: We truncate \bar{u} to get an unstable, compactly supported vortex
- Step 2:We use the truncate vortex as a radial profile of 3D-Axisymmetric-no-swirl velocity field
- Step 3: We employ spectral perturbative argument to show that the vortex ring inherits the instability of Vishik's vortex

What's next

- I'll present details of the construction of the unstable vortex ring
- I'll explain how to build non-uniqueness when Ω is a bounded domain, or a torus (gluing technique)
- I'll present open questions and related problems

Thank you for your attention!